Skip to main content
Log in

Quantification of the Evolution of Silicon Acoustic Properties in Si(1-x)Gex Binary Alloy

  • Perspective Article
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Si(1-x)Gex is an alloy whose properties strongly depend on the molar fraction, x, of Ge. It is our aim to quantify the effects of x on some elastic parameters such as surface acoustic wave, SAW, velocities (longitudinal, VL, transverse, VT, and Rayleigh, VR,) as well as acoustic impedances, Z. What is the evaluation of Silicon acoustic properties in Si(1-x)Gex binary alloy? From the numerical calculations of the elastic properties which have combined with the most powerful technique of the SAM scanning acoustic microscopy, we have succeeded in quantifying the evaluation of the acoustic properties of Silicon in the SiGe alloy. A general semi-empirical formula was determined for all SAW velocities of the form: \( {V}_{i\left( Si Ge\right)}={V}_{i(Si)}-2\left({V}_{i(Si)}+{V}_{i(Ge)}\right)x/5+3\left[{V}_{i(Ge)},{x}^2\right]/8 \) where the subscript i stands for longitudinal, transverse and Rayleigh modes. Moreover, a new relation for acoustic impedance, Z(x) of Si(1-x)Gex alloys was proposed in terms of known impedance values of Si and Ge, i.e., \( {Z}_{Si Ge}={Z}_{Ge}-\left[{Z}_{Ge}-{Z}_{Si}\right]{e}^{-9\ x/2} \). The importance of these relations lies in the possibility of deducing and predicting elastic properties of any given composition of SiGe alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Raynal PE, Loup V, Vallier L, Martin M, Moeyaert J, Pelissier B, Rodriguez P, Hartmann JM, Besson P (2018) Wet and siconi cleaning sequences for SiGe p-type metal oxide semiconductor channels. Microelectron Eng. 84:187–188. https://doi.org/10.1016/j.mee.2017.12.003

    Article  CAS  Google Scholar 

  2. Montalenti F, Rovaris F, Bergamaschini R, Miglio L, Salvalaglio M, Isella G, Isa F, Känel HV (2018) Dislocation-Free SiGe/Si Heterostructures. Crystals. 8(6):257–273. https://doi.org/10.3390/cryst8060257

    Article  CAS  Google Scholar 

  3. Zaumseil P, Schubert MA, Yamamoto Y, Skibitzki O, Capellini G, Schroeder T (2016) Misfit dislocation free epitaxial growth of SiGe on compliant nanostructured silicon. Solid State Phen. 242:402–407. https://doi.org/10.4028/www.scientific.net/SSP.242.402

    Article  Google Scholar 

  4. Li J, Han J, Jiang T, Luo L, Xiang Y (2018) Effect of synthesis hproperty of SiGe alloy. J Electron Mater. 47:4579–4584. https://doi.org/10.1007/s11664-018-6334-2

    Article  CAS  Google Scholar 

  5. Li D, Zhao X, Wang L, Conrad B (2016) Optical absorption of graded buffer layers and short circuit current improvement in SiGe solar cells grown on silicon substrates. Sol Energy Mater Sol Cells. 157:973–980. https://doi.org/10.1016/j.solmat.2016.08.019

    Article  CAS  Google Scholar 

  6. Zhao X, Li D, Conrad B, Wang L, Soeriyadi AH, Diaz M, Lochtefeld A, Gerger A, Wurfl IP, Barnett A (2015) Material and device analysis of SiGe solar cell in GaAsP-SiGe dual junction solar cell on Si substrate. Sol Energy Mater Sol Cell. 134:114–121. https://doi.org/10.1016/j.solmat.2014.11.027

    Article  CAS  Google Scholar 

  7. Ioffe AF, Stil’bans LS, Iordanishvili EK, Statviskaya TS, Gelbtuc A (1957) Semiconductor thermoelements and Thermoelectric cooling. Phys Today. 12(5):42. https://doi.org/10.1063/1.3060810

    Article  Google Scholar 

  8. Yonenaga I (2016) SixGe1-x bulk crystals. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.03687-0

  9. Feng S, Li LB, Xue B (2018) Research on a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Adv Cond Matter Phys. 2018:8297650. https://doi.org/10.1155/2018/8297650

    Article  CAS  Google Scholar 

  10. Hong MH, Perng DC (2017) Effects on selective epitaxial growth of strained-SiGe p-MOSFETs on various (001) Si recess structures. J Theor Appl Phys. 11(4):313–317. https://doi.org/10.1007/s40094-018-0272-5

    Article  Google Scholar 

  11. Kostanze RH, Claudio M, Fabio B, Luciano C (2021) Intrinsic thermoelectric figure of merit of bulk compositional SiGe alloys: Afirst-principles study. Phys Rev Mater 5:065403. https://doi.org/10.1103/PhysRevMaterials.5.065403

    Article  Google Scholar 

  12. Baidakova NA, Verbus VA, Morozova EE, Novikov AV, Skorohodov EV, Shaleev MV, Yurasov DV, Hombe A, Kurokawa Y, Usami N (2017) Selective etching of Si, SiGe, Ge and its usage for increasing the efficiency of silicon solar cells. Semiconductors. 51:1542–1546. https://doi.org/10.1134/S1063782617120028

    Article  CAS  Google Scholar 

  13. Basu R, Singh A (2021) High temperature Si-Ge alloy towards thermoelectric applications: a comprehensive review. Mater Today Phys 21:100468. https://doi.org/10.1016/j.mtphys.2021.100468

    Article  CAS  Google Scholar 

  14. Paul DJ (1999) Silicon-Germanium strained layer materials in microelectronics. Adv Mater 11(3):191–204. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<191::AID-ADMA191>3.0.CO;2-3

    Article  CAS  Google Scholar 

  15. El-Hadek MA (2018) Dynamic equivalence of ultrasonic stress wave proprgation in solides. Ultrasonics 83:214–221. https://doi.org/10.1016/j.ultras.2017.06.007

    Article  PubMed  Google Scholar 

  16. Chen B, Callens D, Campistron P, Moulin E, Debreyne P, Delaplace G (2019) Minotoring cleaning cycles of fouled duts using ultrasonic coda wave interferometry (CWI). Ultrasonics 96:253–260. https://doi.org/10.1016/j.ultras.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Li YF, Cheng CH, Chow WK (2019) A stydy on the effects on the slope on the critical velocity of longitudinal ventilation in tilted tunnels. Tunn Undergr Space Technol 89:262–267. https://doi.org/10.1016/j.tust.2019.04.015

    Article  Google Scholar 

  18. Leng X, Chanson H (2018) Transverse velocity profiling under positive surges in channels. Flow Meas Instrum 64:14–27. https://doi.org/10.1016/j.flowmeasinst.2018.10.006

    Article  Google Scholar 

  19. Levinshteîn ME, Rumyantsev SL, Shur M (2001) Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York

    Google Scholar 

  20. Langueur H, Kassali K, Lebgaa N (2013) Density functional study of structural, mechanic thermodynamic and dynamic properties of SiGe alloys. J Comput Theor Nanos 10:86–94. https://doi.org/10.1166/jctn.2013.2662

    Article  CAS  Google Scholar 

  21. Sze SM (1981) Physics of Semiconductor Devices. John Wiley and Sons, New York

    Google Scholar 

  22. Zamanipour Z, Shi X, Dehkordi AM, Krasinski J (2012) The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys Status Solidi A. 209(10):2049–2058. https://doi.org/10.1002/pssa.201228102

    Article  CAS  Google Scholar 

  23. Zamanipour Z, Salahinejad E, Norouzzadeh P, Krasinski J (2013) The effect of phase heterogeneity on thermoelectric properties of nanostructured silicon germanium alloy. J Appl Phys. 114(2):023705–023711 https://doi.org/10.1063/1.4813474

    Article  Google Scholar 

  24. Touati Tliba L, Hadjoub Z, Touati I, Doghmane A (2017) Quantification of interatomic distances effects on elastic properties of metals. Chin J Phys. 55(6):2614–2620. https://doi.org/10.1016/j.cjph.2017.10.016

    Article  CAS  Google Scholar 

  25. Hakoda C, Lissenden CJ (2019) Comparaison of quasi-Rayleigh waves and Rayleigh waves, and clarifying the cut-off frequency of quasi-Rayleigh waves. Ultrasonics. 92:50–56. https://doi.org/10.1016/j.ultras.2018.08.021

    Article  PubMed  Google Scholar 

  26. Malamud G, Elgin L, Handy T, Huntington C, Drake RP, Shvarts D, Shimony A, Kuranz CC (2019) Design of a single-mode Rayleigh-Taylor instability experiment in the highly nonlinear regime. High Energy Dens Phys. 32:18–30. https://doi.org/10.1016/j.hedp.2019.04.004

    Article  Google Scholar 

  27. Yu D, Fu S, Tang M, Liu D (2015) Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber. Opt Comm. 34:15–20. https://doi.org/10.1016/j.optcom.2015.02.027

    Article  CAS  Google Scholar 

  28. Sheppard CJR, Wilson T (1981) Effects of high angles of convergence on V(z) in the scanning acoustic microscopy. Appl Phys Lett. 38:858–859. https://doi.org/10.1063/1.92198

    Article  Google Scholar 

  29. Kushibiki J, Chubachi N (1985) Material characterization by line-focus-beam acoustic microscope. IEEE Sonics Ultrason. 32:189–212. https://doi.org/10.1109/T-SU.1985.31586

    Article  Google Scholar 

  30. Briggs A, Kolosov OV (1996) Acoustic microscopy for imaging and characterization. MRS Bulletin. 21(10):30–35. https://doi.org/10.1557/S0883769400031614

    Article  CAS  Google Scholar 

  31. Arakawa M, Kanai H, Ishikawa K, Nagaoka R, Kabayashi K, Saijo Y (2018) A method for the design of ultrasonic devices for scanning acoustic microscopy using impulsive signals. Ultrasonics. 84:172–179. https://doi.org/10.1016/j.ultras.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  32. Ohara Y, Oshiumi T, Nakajma H, Yamanaka K, Wu X, Uchimoto T, Takagi T, Tsuji T, Mihara T (2017) Ultrasonic phased array with surface acoustic wave for imaging cracks. AIP Advances. 7(6):065214. https://doi.org/10.1063/1.4989725

    Article  CAS  Google Scholar 

  33. Najafi E, Liao B, Scarborough T, Zewail A (2018) Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy. Ultramicroscopy. 184:46–50. https://doi.org/10.1016/j.ultramic.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  34. Scheler T, Rodrigues M, Cornelius TW, Mocuta C, Malachias A, Magalhães-Paniago R, Comin F, Chevrier J, Metzger TH (2009) Probing the elastic properties of individual nanostructures by combining in situ atomic force microscopy and micro-x-ray diffraction. Appl Phys Lett 94(2):023109–023112. https://doi.org/10.1063/1.3067988

    Article  CAS  Google Scholar 

  35. Doghmane M, Hadjoub F, Doghmane A, Hadjoub Z (2007) Approaches for evaluating Young's and shear moduli in terms of a single SAW velocity via the SAM technique. Mater Lett. 61(3):813–816. https://doi.org/10.1016/j.matlet.2006.05.080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Ibtissem Touati.

Ethics declarations

Consent to Participate

We, the undersigned authors of the manuscript “Quantification of the evoluation of silicon acoustic properties in Si(1-x)Gex binary alloy” transfer to the founders and Editorial board of the journal “Silicon” the right to publish this manuscript in English language. We confirm that publication of this infringe a copyright of the others persons or organization and publication ethics.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touati, I., Doghmane, A., Khoualdia, A. et al. Quantification of the Evolution of Silicon Acoustic Properties in Si(1-x)Gex Binary Alloy. Silicon 14, 10873–10879 (2022). https://doi.org/10.1007/s12633-022-01821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01821-5

Keywords

Navigation