Skip to main content
Log in

Structures of Iron-Lithium-Calcium-Silicate Glass and its Devitrified State

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The structure of SiO2-Li2O-CaO-Fe2O3 glass is studied by neutron diffraction together with Reverse Monte Carlo simulation as well as by Raman and Extended X-ray Absorption Fine Structure spectroscopy. In order to check for the extent to which iron oxide can be successfully included in the glass, 15 mol% iron was tried but resulted in partial devitrification. Average local structure parameters are presented. The first neighbour distances were found to be independent of concentration within the limits of error: rSi-O = 1.60 Å; rFe-O = 1.90 Å; rLi-O = 1.95/2.0 Å and rCa-O = 2.30 Å. Tetrahedral units of Si(O) – from SiO2 - and Fe(O) – from Fe2O3 - with average coordination numbers 3.48 and 4.59 respectively, were found. Raman spectral analyses show the Q1 and Q2 connections to be more numerous (~50%) for the purely glassy (10Fe), than for 15Fe (~60%), with Q3 connections occurring twice as often (~35%) for the glass as the devitrified sample (~17%). Thus, the devitrified sample may have a more open structure capable of accommodating Fe ions in nano-sized iron-rich regions as indicated by the RMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Our manuscript and associated personal data.

References

  1. Ross S, Welsch A-M, Behrens H (2015). Phys Chem Chem Phys 17:465–474

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn MW, Heitjans P (2007). Solid State Ionics 180:302–307

    Article  Google Scholar 

  3. Staesche H, Murugavel S, Roling B (2009). Z Phys Chem 223:1229–1238

    Article  CAS  Google Scholar 

  4. Sycheva GA, Borisenko E (ed.) (2012) Nucleation and Crystal Growth in Phase Separated Glasses in the lithium Silicate System, Crystallization and Materials Science of Modern Artificial and Natural Crystals, 978–953–307-608-9. https://doi.org/10.5772/28355

  5. Sycheva G (2016) Crystal growth and nucleation in glasses in the lithium silicate system. Technology 6:29–55. https://doi.org/10.4236/jcpt.2016.64004

    Article  CAS  Google Scholar 

  6. Shelby JE, Shelby SR (2000) Phase separation and the properties of lithium calcium silicate Glasses. Phys Chem Glasses 41(2):59–64

    CAS  Google Scholar 

  7. Wright AC, Clarke SJ, Howard CK, Bingham PA, Forder SD, Holland D, Martlew D, Fischer HE (2014). Phys Chem Glasses Eur J Glass Sci Technol B 55(6):243–252

    Google Scholar 

  8. Mekki A, Holland D, McConville CF, Salim MJ (1996). Non-Cryst Solids 208:267–276

    Article  CAS  Google Scholar 

  9. Weigel C, Cormier L, Calas G, Galoisy L, Bowron DTJ (2008). Non-Cryst Solids 354:5378–5385

    Article  CAS  Google Scholar 

  10. Johnson JA, Johnson CE, Holland D, Mekki A, Appleyard P, Thomas MFJ (1999). Non-Cryst Solids 246:104–114

    Article  CAS  Google Scholar 

  11. Bingham PA, Parker JM, Searle T, Williams JM, Fyles KJ (1999). Non-Cryst Solids 253:203–209

    Article  CAS  Google Scholar 

  12. Holland D, Mekki A, Gee IA, McConville CF, Johnson JA, Johnson CE, Appleyard P, Thomas MJ (1999). Non-Cryst Solids 253:192–202

    Article  CAS  Google Scholar 

  13. Bingham PA, Hannant OM, Reeves-McLaren N, Stennett MC, Hand RJ, Non-Cryst J (2014). Solids 387:47–56

    CAS  Google Scholar 

  14. Iwamoto N, Umesaki N, Atsumi T (1987). J Mater Sci Lett 6:271–273

    Article  CAS  Google Scholar 

  15. Hannoyer B, Lenglet M, Dürr J, Cortes R (1992). J Non-Cryst Solids 151:209–216

    Article  CAS  Google Scholar 

  16. Henderson CMB, Cressey G, Redfern SAT (1995). Radiat Phys Chem 45:459–481

    Article  CAS  Google Scholar 

  17. Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EJ, Brown Jr GE (2005). Geochim Cosmochim Acta 69:4315–4332

    Article  CAS  Google Scholar 

  18. Nayak MT, Desa JAE (2018). J Raman Spectrosc 49:1507–1513. https://doi.org/10.1002/jrs.5397

  19. Nayak MT, Desa JAE, Reddy VR, Nayak C, Bhattacharyya D, Jha SN, Non-Cryst J (2019). Solids 509C:42–47. https://doi.org/10.1016/j.jnoncrysol.2019.01.009

  20. Nayak MT, Desa JAE, Reddy VR, Nayak C, Bhattacharyya D, Jha SN, Non-Cryst J (2019). Solids 518:85–91. https://doi.org/10.1016/j.jnoncrysol.2019.04.025

  21. Nayak MT, Desa JAE, Babu PD (2018). AIP Conf Proc 1942:070006. https://doi.org/10.1063/1.5028804

    Article  CAS  Google Scholar 

  22. Nayak MT, Desa JAE, Babu PD (2019). AIP Conf Proc 2115:030224. https://doi.org/10.1063/1.5113063

    Article  CAS  Google Scholar 

  23. Nayak MT (2019) Thesis submitted to Department of Physics, Goa University, Structural studies of iron containing alkali silicate glasses. http://hdl.handle.net/10603/286745

  24. Nayak MT, Erwin Desa JA, Babu PD (2018). J Non-Cryst Solids 484:1–7. https://doi.org/10.1016/j.jnoncrysol.2017.12.050

  25. Salman SM, Ghoneim NA, Gharib S (1984). Thermochim Acta 72:269–276

    Article  CAS  Google Scholar 

  26. Dasannacharya BA (1992). Physica B 180 &181:880–882

    Article  Google Scholar 

  27. Egelstaff PA (1987) 14. Classical Fluids. In: Price DL, Sköld K (eds) Methods of experimental physics B, vol 23. Acadamic Press, New York, p 405

    Google Scholar 

  28. Hannon AC (2006) ISIS Disordered Materials Database. http://wwwisis2.isis.rl.ac.uk/Disordered/Database/DBMain.htm, available at 05.19.2020

  29. McGreevy RL, Pusztai LL (1988). Mol Simul 1:359–367

    Article  Google Scholar 

  30. Gereben O, Jovari P, Temleitner L, Pusztai L (2007). J Optoelectron Adv Mater 9-10:3021–3027

    Google Scholar 

  31. Colomban P, Tournie A, Bellot-Gurlet L (2006). J Raman Spectrosc 37:841–852

    Article  CAS  Google Scholar 

  32. Poswal AK, Agrawal A, Yadav AK, Nayak C, Basu S, Kane SR, Garg CK, Bhattachryya D, Jha SN, Sahoo NK (2014). AIP Conf Proc 1591:649

    Article  CAS  Google Scholar 

  33. Basu S, Nayak C, Yadav AK, Agrawal A, Poswal AK, Bhattacharyya D, Jha SN, Sahoo NK (2014). J Phys Conf Ser 493:012032

    Article  Google Scholar 

  34. Konigsberger DC, Prince R (1988) X ray absorption: principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  35. Kelly SD, Hesterberg D, Ravel B (2008) Analysis of soils and minerals using X-ray absorption spectroscopy. p. 387-464. In: AL Ulery and R Drees (eds.), Methods of soil analysis - part 5. Mineralogical methods; Soil Sci Soc Am, Madison, WI. ISBN-13: 978-0891188469

  36. Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995). Physica B 154:208

    Google Scholar 

  37. Umesaki N, Iwamoto N, Tatsumisago M, Minami T (1988). J Non-Cryst Solids 106:77

    Article  CAS  Google Scholar 

  38. Hannon AC, Vessal B, Parker JM (1992). J Non-Cryst Solids 150:97–102

    Article  CAS  Google Scholar 

  39. Karlsson C, Zanhellini E, Swenson J, Roling B, Bowron DT, Börjesson L (2005). Phys Rev B 72:064206

    Article  Google Scholar 

  40. Baert K, Meulebroeck W, Wouters H, Cosyns P, Nys K, Thienpontb H, Terryna H (2011). J Raman Spectrosc 42:1789–1795

    Article  CAS  Google Scholar 

  41. Colomban P, Sagon G, Faurel X (2001). J Raman Spectrosc 32:351–360

    Article  CAS  Google Scholar 

  42. Yadav AK, Singh P (2015). RSC Adv 5:67583–67609

    Article  CAS  Google Scholar 

  43. Boolchand P, Jin M, Novita DI, Chakravarty S (2007). J Raman Spectrosc 38:660–672

    Article  CAS  Google Scholar 

  44. Parkinson BG, Holland D, Smith ME, Larson C, Doerr J, Affatigato M, Feller SA, Howes AP, Scales CR, Non-Cryst J (2008). Solids 354:1936–1942

    CAS  Google Scholar 

  45. Kalampounias AG (2011). Bull Mater Sci 34:299–303

    Article  CAS  Google Scholar 

  46. Koroleva ON, Ivanova TN (2014). Russ Metall 2014:140–146

    Article  Google Scholar 

  47. Khalil EMA, ElBatal FH, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010). Physica B 405:1294–1300

    Article  CAS  Google Scholar 

  48. Lai YM, Liang XF, Yang SY, Wang JX, Cao LH, Dai B (2011). J Mol Struct 992:84–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding for this work by the UGC-DAE CSR Project CRS-M-209. Thanks are due to Materials Research Centre (MNIT, Jaipur) for collecting the Raman spectroscopic data. Grateful thanks are also due to Dr. Debasis Sen of S.S.P.D, B.A.R.C, Mumbai - India for the information from SANS. Dr. Manjunath T. Nayak is pleased to acknowledge the support of a UGC BSR Fellowship as a Senior Research Fellow.

Funding

The authors gratefully acknowledge funding for this work by the UGC-DAE CSR Project CRS-M-209. Dr. Manjunath T. Nayak is pleased to acknowledge the support of a UGC BSR Fellowship as a Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

Manjunath T. Nayak: Conceptualization, Methodology, Software Investigation, Writing- Original Draft.

J.A. Erwin Desa: Supervision, Project administration, Funding acquisition, Investigation, Writing – Review and Editing.

P.S.R. Krishna: Software, Investigation, Formal analysis.

A.B. Shinde: Investigation, Formal analysis.

Margit Fábián: Software, Formal analysis, Writing – commentary or revision.

C. Nayak: Validation, Investigation, Formal analysis, Writing – commentary or revision.

D. Bhattacharyya: Investigation, Formal analysis.

S. N. Jha: investigation, Formal analysis.

Corresponding author

Correspondence to Manjunath T. Nayak.

Ethics declarations

As corresponding author, I Manjunath Timappa Nayak, hereby confirm on behalf of all authors that, this manuscript has not been published, was not, and is not being submitted to any other journal.

Consent to Participate & Publication

As corresponding author, I Manjunath Timappa Nayak, hereby consent on behalf of all authors to participate & publication.

Conflict of Interest

The authors declare that they have no known conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M.T., Desa, J.A.E., Krishna, P. et al. Structures of Iron-Lithium-Calcium-Silicate Glass and its Devitrified State. Silicon 14, 10337–10345 (2022). https://doi.org/10.1007/s12633-022-01789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01789-2

Keywords

Navigation