Skip to main content

Advertisement

Log in

Chemical Composition, Mechanical, and Thermal Characteristics of Bioactive Glass for Better Processing Features

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Glass system was designed using the formula 34B2O3 – 9SiO2 – 18CaO – 14 P2O5 – (25 − x) Na2O - xTiO2, x = (0 ≤ x ≤ 5 mol%) in this article. Glass systems were investigated in terms of physical, structural, thermal, and mechanical characteristics. Furthermore, XRD was used to characterize amorphous nature systematically. The structural networks in the samples were analyzed by FTIR spectra to illustrate structural units like SiO4, TiO4, BO3, and BO4. Titanium ions act as a trigger to convert BO3 into BO4 units, according to preliminary FT-IR results. The glass density and velocities increased after adding TiO2. The experimental and theoretical elastic moduli increased with increasing glass densities and velocities. The increasing trend of ΔT with increasing TiO2 concentration suggested that glass stability had enhanced. According to the results of this study, the mechanical and thermal features of the bioactive glass compositions studied are significantly influenced by the addition of TiO2. This research could be used in the future to improve the mechanical and thermal efficiency of bioactive glass systems. G 5 is the best one in terms of mechanical and thermal properties according to these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript and associated personal data.

References

  1. Rajkumar G, Aravindan S, Rajendran V (2010) Structural analysis of zirconia-doped calcium phosphate glasses. J Non-Cryst Solids 356:1432–1438. https://doi.org/10.1016/j.jnoncrysol.2010.05.003

    Article  CAS  Google Scholar 

  2. Shaaban KS, Yousef ES (2020) Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik 203:163976. https://doi.org/10.1016/j.ijleo.2019.163976

    Article  CAS  Google Scholar 

  3. El-Rehim AFA, Zahran HY, Yahia IS, Makhlouf SA, Shaaban KS (2021) Radiation, crystallization, and physical properties of cadmium borate glasses. Silicon 13:2289–2307. https://doi.org/10.1007/s12633-020-00798-3

    Article  CAS  Google Scholar 

  4. El-Rehim AFA, Zahran HY, Yahia IS, Ali AM, Shaaban KS (2020) Physical, radiation shielding and crystallization properties of Na2O-Bi2O3- MoO3-B2O3- SiO2-Fe2O3 glasses. Silicon. 14:405–418. https://doi.org/10.1007/s12633-020-00827-1

    Article  CAS  Google Scholar 

  5. Shaaban KS, Yousef ES, Mahmoud SA, Wahab EAA, Shaaban ER (2020) Mechanical, structural and crystallization properties in Titanate doped phosphate glasses. J Inorg Organomet Polym Mater 30:4655–4663. https://doi.org/10.1007/s10904-020-01574-x

    Article  CAS  Google Scholar 

  6. Shaaban KS, Al-Baradi AM, Alrowaili ZA, Ali AM, Al-Buriahi MS, Wahab EAA (2021) Structural, thermal, and mechanical characteristics of yttrium lithium borate glasses and glass–ceramics. J Mater Sci Mater Electron 32:28065–28075. https://doi.org/10.1007/s10854-021-07158-w

    Article  CAS  Google Scholar 

  7. El-Rehim AFA, Wahab EAA, Halaka MMA, Shaaban KS (2021) Optical properties of SiO2 – TiO2 – La2O3 – Na2O – Y2O3 glasses and a novel process of preparing the parent glass-ceramics. Silicon. 14:373–384. https://doi.org/10.1007/s12633-021-01002-w

    Article  CAS  Google Scholar 

  8. Fujibayashi S (2003) A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials 24:1349–1356. https://doi.org/10.1016/s0142-9612(02)00511-2

    Article  CAS  PubMed  Google Scholar 

  9. Begum AN, Rajendran V, Ylänen H (2006) Effect of thermal treatment on physical properties of bioactive glass. Mater Chem Phys 96:409–417. https://doi.org/10.1016/j.matchemphys.2005.07.031

    Article  CAS  Google Scholar 

  10. Shaaban KS, Alrowaili ZA, Al-Baradi AM, Ali AM, Wahab EAA, Al-Buriahi MS (2021) Mechanical and thermodynamic characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO glasses. Silicon. https://doi.org/10.1007/s12633-021-01441-5

  11. Shaaban KS, Alomairy S, Al-Buriahi MS (2021) Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J Mater Sci Mater Electron 32:26034–26048. https://doi.org/10.1007/s10854-021-05885-8

    Article  CAS  Google Scholar 

  12. Nabian N, Delavar M, Rabiee MS, Jahanshahi M (2013) Quenched/unquenched nanobioactive glass-ceramics: synthesis and in vitro bioactivity evaluation in Ringer's solution with BSA. Chemical Industry and Chemical Engineering Quarterly/CICEQ 19(2):231–239. https://doi.org/10.2298/CICEQ120323057

    Article  CAS  Google Scholar 

  13. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  14. Fiume E, Barberi J, Verné E, Baino F (2018) Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J Functional Biomaterials 9:24. https://doi.org/10.3390/jfb9010024

    Article  CAS  Google Scholar 

  15. Sitarz M, Bulat K, Olejniczak Z (2012) Structure and microstructure of glasses from a NaCaPO4–SiO2–BPO4 system. Vib Spectrosc 61:72–77. https://doi.org/10.1016/j.vibspec.2012.01.016

    Article  CAS  Google Scholar 

  16. Mohini GJ, Krishnamacharyulu N, Sahaya Baskaran G, Rao PV, Veeraiah N (2013) Studies on influence of aluminium ions on the bioactivity of B2O3–SiO2–P2O5–Na2O–CaO glass system by means of spectroscopic studies. Appl Surf Sci 287:46–53. https://doi.org/10.1016/j.apsusc.2013.09.055

    Article  CAS  Google Scholar 

  17. Ghorbanzade Zaferani SP, Nabian N, Delavar M, Rabiee SM (2021) Novel methods for adding metal oxides nanoparticles to bioactive glass 58S matrix: a characterization and bioactivity evaluation study. Silicon. https://doi.org/10.1007/s12633-021-01487-5

  18. Ghorbanzade Zaferani SP, Nabian N, Delavar M, Rabiee SM (2021) Direct impregnation of MgO nanoparticles in 58S bioactive glass: bioactivity evaluation and antibacterial activity, Iranian journal of science and technology. Transactions A: Science 45(3):885–898. https://doi.org/10.1007/s40995-021-01103-6

    Article  Google Scholar 

  19. Saneei Siavashy O, Nabian N, Rabiee SM (2021) Titanium dioxide nanotubes incorporated bioactive glass nanocomposites: synthesis, characterization, bioactivity evaluation and drug loading. Int J Eng 34(1). https://doi.org/10.5829/ije.2021.34.01a.01

  20. Dahshan A, Saddeek YB, Aly KA, Shaaban KHS, Hussein MF, Abo El Naga AO, Shaban SA, Mahmoud SO (2019) Preparation and characterization of Li2B4O7 – TiO2 – SiO2 glasses doped with metal-organic framework derived nano-porous Cr2O3. J Non-Cryst Solids 508:51–61. https://doi.org/10.1016/j.jnoncrysol.2019.01.002

    Article  CAS  Google Scholar 

  21. Alomairy S, Aboraia AM, Shaaban ER, Shaaban KS (2021) Comparative studies on spectroscopic and crystallization properties of Al2O3 -Li2O- B2O3-TiO2 glasses. Braz J Phys 51:1237–1248. https://doi.org/10.1007/s13538-021-00928-1

    Article  CAS  Google Scholar 

  22. Alharbi T, Mohamed HFM, Saddeek YB, El-Haseib AY, Shaaban KS (2019) Study of the TiO2 effect on the heavy metals oxides borosilicate glasses structure using gamma-ray spectroscopy and positron annihilation technique. Radiat Phys Chem 164:108345. https://doi.org/10.1016/j.radphyschem.2019.108345

    Article  CAS  Google Scholar 

  23. Mahmoud KH, Alsubaie AS, Wahab EAA, Abdel-Rahim FM, Shaaban KS (2021) Research on the effects of yttrium on bismuth Titanate borosilicate glass system. Silicon. https://doi.org/10.1007/s12633-021-01125-0

  24. Shaaban KS, Boukhris I, Kebaili I, Al-Buriahi MS (2021) Spectroscopic and attenuation shielding studies on B2O3-SiO2-LiF-ZnO-TiO2 glasses. Silicon. https://doi.org/10.1007/s12633-021-01080-w

  25. Shaaban KS, Al-Baradi AM, Wahab EAA (2021) The impact of Y2O3 on physical and optical characteristics, polarizability, optical basicity, and dispersion parameters of B2O3 – SiO2 – Bi2O3 – TiO2 glasses. Silicon. https://doi.org/10.1007/s12633-021-01309-8

  26. Al-Baradi AM, El-Rehim AFA, Alrowaili ZA, Al-Buriahi MS, Shaaban KS (2021) FT-IR and gamma shielding characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO glasses. Silicon. https://doi.org/10.1007/s12633-021-01481-x

  27. Ali AM, Alrowaili ZA, Al-Baradi AM, Al-Buriahi MS, Wahab EAA, Shaaban KS (2021) A study of thermal, and optical properties of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO glasses. Silicon. https://doi.org/10.1007/s12633-021-01440-6

  28. Shaaban KS, Koubisy MSI, Zahran HY, Yahia IS (2020) Spectroscopic properties, electronic polarizability, and optical basicity of titanium–cadmium tellurite glasses doped with different amounts of lanthanum. J Inorg Organomet Polym Mater 30:4999–5008. https://doi.org/10.1007/s10904-020-01640-4

    Article  CAS  Google Scholar 

  29. Saddeek YB, Aly KA, Shaaban KS, Ali AM, Sayed MA (2019) The effect of TiO2 on the optical and mechanical properties of heavy metal oxide borosilicate glasses. Silicon 11:1253–1260. https://doi.org/10.1007/s12633-018-9912-2

    Article  CAS  Google Scholar 

  30. El-Rehim AFA, Zahran HY, Yahia IS, Wahab EAA, Shaaban KS (2021) Structural, elastic moduli, and radiation shielding of SiO2-TiO2-La2O3-Na2O glasses containing Y2O3. J Mater Eng Perform 30:1872–1884. https://doi.org/10.1007/s11665-021-05513-w

    Article  CAS  Google Scholar 

  31. Duan R-G, Liang K-M, Gu S-R (1998) Effect of changing TiO2 content on structure and crystallization of CaO-Al2O3-SiO2 system glasses. J Eur Ceram Soc 18:1729–1735. https://doi.org/10.1016/s0955-2219(98)00105-8

    Article  CAS  Google Scholar 

  32. Moghanian A, Nasiripour S, Miri Z, Hajifathali Z, Hosseini SH, Sajjadnejad M, Aghabarari R, Nankali N, Miri AK, Tahriri M (2021) Structural and in vitro biological evaluation of sol-gel derived multifunctional Ti+4/Sr+2 co-doped bioactive glass with enhanced properties for bone healing. Ceram Int 47:29451–29462. https://doi.org/10.1016/j.ceramint.2021.07.113

    Article  CAS  Google Scholar 

  33. Moghanian A, Koohfar A, Hosseini S, Hosseini SH, Ghorbanoghli A, Sajjadnejad M, Raz M, Elsa M, Sharifianjazi F (2021) Synthesis, characterization and in vitro biological properties of simultaneous co-substituted Ti+4/li+1 58s bioactive glass. J Non-Cryst Solids 561:120740. https://doi.org/10.1016/j.jnoncrysol.2021.120740

    Article  CAS  Google Scholar 

  34. Amirhossein Moghanian, Mohammadamin Zohourfazeli, Mahzad Haji Mahdi Tajer, Amir K. Miri,(2021) Comprehensive in vitro studies of novel sol gel-derived Zr4+/Zn2+ co-substituted bioactive glass with enhanced biological properties for bone healing, journal of non-crystalline Solids,566,120887, https://doi.org/10.1016/j.jnoncrysol.2021.12088

  35. Moghanian A, Pazhouheshgar A, Ghorbanoghli A (2021) Nonlinear viscoelastic modeling of synthesized silicate-based bioactive glass/Polysulfone composite: theory and medical applications. Silicon. https://doi.org/10.1007/s12633-020-00900-9

  36. Rahmani M, Moghanian A, Saghafi Yazdi M (2021) Synthesis and characterization of in vitro properties and biological behavior of ag/li co-doped 68S bioactive glass with and without phosphate. J Non-Cryst Solids 570:121015. https://doi.org/10.1016/j.jnoncrysol.2021.121015

    Article  CAS  Google Scholar 

  37. Moghanian A, Tajer MHM, Zohourfazeli M, Miri Z, Yazdi M (2021) Sol-gel derived silicate-based bioactive glass: studies of synergetic effect of zirconium and magnesium on structural and biological characteristics. J Non-Cryst Solids 554:120613. https://doi.org/10.1016/j.jnoncrysol.2020.120613

    Article  CAS  Google Scholar 

  38. Moghanian A, Nasiripour S, Koohfar A, Sajjadnejad M, Hosseini S, Taherkhani M, Miri Z, Hosseini SH, Aminitabar M, Rashvand A (2021) Characterization, in vitro bioactivity and biological studies of sol-gel-derived TiO2 substituted 58S bioactive glass. Int J Appl Ceram Technol 18:1430–1441. https://doi.org/10.1111/ijac.13782

    Article  CAS  Google Scholar 

  39. Pazhouheshgar A, Haghighatfar Y, Moghanian A (2020) Finite element method and analytical analysis of static and dynamic pull-in instability of a functionally graded microplate. J Vib Control 28:425–438. https://doi.org/10.1177/1077546320980208

    Article  Google Scholar 

  40. Saatchi A, Arani AR, Moghanian A, Mozafari M (2020) Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.08.130

  41. Saatchi A, Arani AR, Moghanian A, Mozafari M (2021) Cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing. Ceram Int 47(7):9447–9461. https://doi.org/10.1016/j.ceramint.2020.12.078

  42. Shaaban KS, Alotaibi BM, Alharbi N, Alrowaili ZA, Al-Buriahi MS, Makhlouf SA, Abd El-Rehim AF (2022) Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications. Radiat Phys Chem 109995:109995. https://doi.org/10.1016/j.radphyschem.2022.109995

    Article  CAS  Google Scholar 

  43. Abdel Wahab EA, Shaaban KS, Yousef ES (2020) Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron 52. https://doi.org/10.1007/s11082-020-02575-3

  44. Shaaban KS, Saddeek YB (2017) Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) glass system. Silicon 9:785–793. https://doi.org/10.1007/s12633-017-9558-5

    Article  CAS  Google Scholar 

  45. El-Maaref AA, Wahab EAA, Shaaban KS, El-Agmy RM (2021) Enhancement of spectroscopic parameters of Er3+-doped cadmium lithium gadolinium silicate glasses as an active medium for lasers and optical amplifiers in the NIR-region. Solid State Sci 113:106539. https://doi.org/10.1016/j.solidstatesciences.2021.106539

    Article  CAS  Google Scholar 

  46. El-Rehim AFA, Shaaban KS (2021) Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J Mater Sci Mater Electron 32:4651–4671. https://doi.org/10.1007/s10854-020-05204-7

    Article  CAS  Google Scholar 

  47. Sayed MA, Ali AM, Abd El-Rehim AF et al (2021) Dispersion parameters, polarizability, and basicity of Lithium phosphate glasses. J Elec Materi 50:3116–3128. https://doi.org/10.1007/s11664-021-08921-9

    Article  CAS  Google Scholar 

  48. Fayad AM, Shaaban KS, Abd-Allah WM, Ouis M (2020) Structural and optical study of CoO doping in Borophosphate host glass and effect of gamma irradiation. J Inorg Organomet Polym Mater 30:5042–5052. https://doi.org/10.1007/s10904-020-01641-3

    Article  CAS  Google Scholar 

  49. El-Maaref AA, Badr S, Shaaban KS, Abdel Wahab EA, Elokr MM (2019) Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses. J Rare Earths 37:253–259. https://doi.org/10.1016/j.jre.2018.06.006

    Article  CAS  Google Scholar 

  50. Abdel Wahab EA, El-Maaref AA, Shaaban KS, Börcsök J, Abdelawwad M (2021) Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Opt Mater 111:110638. https://doi.org/10.1016/j.optmat.2020.110638

    Article  CAS  Google Scholar 

  51. Shaaban KS, Abdel Wahab EA, El-Maaref AA, Abdelawwad M, Shaaban ER, Yousef ES, Wilke H, Hillmer H, Börcsök J (2020) Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci Mater Electron 31:4986–4996. https://doi.org/10.1007/s10854-020-03065-8

    Article  CAS  Google Scholar 

  52. El-Maaref AA, El-Agmy RM, Shaaban KS, Abdel Wahab EA (2021) Optical and spectroscopic study of Nd2O3-doped SBN glass in the near-infrared, visible and UV regions under pumping up-conversion emissions. Eur Phys J Plus 136. https://doi.org/10.1140/epjp/s13360-021-01798-x

  53. Alrowaili ZA, Al-Baradi AM, Sayed MA, Mossad Ali A, Abdel Wahab EA, Al-Buriahi MS, Shaaban KS (2021) The impact of Fe2O3 on the dispersion parameters and gamma / fast neutron shielding characteristics of lithium borosilicate glasses. Optik 168259:168259. https://doi.org/10.1016/j.ijleo.2021.168259

    Article  CAS  Google Scholar 

  54. Wahab EAA, Aboraia AM, Shafey AME, Shaaban KS, Soldatov AV (2021) The effect of ZrO2 on the linear and non-linear optical properties of sodium silicate glass. Opt Quant Electron 53. https://doi.org/10.1007/s11082-021-03164-8

  55. Abdel Wahab EA, Shaaban KS, Alomairy S, Al-Buriahi MS (2021) Electronegativity and optical basicity of glasses containing Na/Pb/B and their high performance for radiation applications: role of ZrO2 nanoparticles. Eur Phys J Plus 136. https://doi.org/10.1140/epjp/s13360-021-01572-z

  56. Abdel Wahab EA, Shaaban KS (2021) Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl Phys A 127.. https://doi.org/10.1007/s00339-021-05062-y

  57. El-Rehim AFA, Ali AM, Zahran HY, Yahia IS, Shaaban KS (2021) Spectroscopic, structural, thermal, and mechanical properties of B2O3-CeO2-PbO2 glasses. J Inorg Organomet Polym Mater 31:1774–1786. https://doi.org/10.1007/s10904-020-01799-w

    Article  CAS  Google Scholar 

  58. Shaaban KS, Saddeek YB, Sayed MA, Yahia IS (2018) Mechanical and thermal properties of Lead borate glasses containing CaO and NaF. Silicon 10:1973–1978. https://doi.org/10.1007/s12633-017-9709-8

    Article  CAS  Google Scholar 

  59. Wahab EAA, Al-Baradi AM, Sayed MA, Ali AM, Makhlouf SA, Shaaban KS (2022) Crystallization and radiation proficiency of transparent sodium silicate glass doped zirconia. Silicon. https://doi.org/10.1007/s12633-021-01652-w

  60. Shaaban KS, Al-Baradi AM, Ali AM (2022) Physical, mechanical, and thermal characteristics of B2O3 - SiO2- Li2O -Fe2O3 glasses. Silicon. https://doi.org/10.1007/s12633-022-01703-w

  61. Alrowaili ZA, Ali AM, Al-Baradi AM, Al-Buriahi MS, Wahab EAA, Shaaban KS (2022) A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt Quant Electron 54(2). https://doi.org/10.1007/s11082-021-03447-0

  62. Koubisy MSI, Shaaban KS, Wahab EAA, Sayyed MI, Mahmoud KA (2021) Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 glasses. Eur Phys J Plus 136. https://doi.org/10.1140/epjp/s13360-021-01125-4

  63. El-Rehim AFA, Shaaban KS, Zahran HY, Yahia IS, Ali AM, Halaka MMA, Makhlouf SA, Wahab EAA, Shaaban ER (2021) Structural and mechanical properties of Lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass–ceramics. J Inorg Organomet Polym Mater 31:1057–1065. https://doi.org/10.1007/s10904-020-01708-1

    Article  CAS  Google Scholar 

  64. Shaaban KS, Zahran HY, Yahia IS, Elsaeedy HI, Shaaban ER, Makhlouf SA, Wahab EAA, Yousef ES (2020) Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Applied physics a 126. https://doi.org/10.1007/s00339-020-03982-9

  65. Alothman MA, Alrowaili ZA, Alzahrani JS, Wahab EAA, Olarinoye IO, Sriwunkum C, Shaaban KS, Al-Buriahi MS (2021) Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. J Alloys Compd 882:160625. https://doi.org/10.1016/j.jallcom.2021.160625

    Article  CAS  Google Scholar 

  66. Shaaban KHS, Saddeek YB, Aly K (2018) Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceram Int 44:3862–3867. https://doi.org/10.1016/j.ceramint.2017.11.175

    Article  CAS  Google Scholar 

  67. El-Taher A, Ali AM, Saddeek YB, Elsaman R, Algarni H, Shaaban K, Amer TZ (2019) Gamma ray shielding and structural properties of iron alkali alumino-phosphate glasses modified by PbO. Radiat Phys Chem 165:108403. https://doi.org/10.1016/j.radphyschem.2019.108403

    Article  CAS  Google Scholar 

  68. Abdel Wahab EA, Shaaban KS (2021) Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl Phys A 127(12). https://doi.org/10.1007/s00339-021-05062-y

  69. Albarzan B, Almuqrin AH, Koubisy MS, Abdel Wahab EA, Mahmoud KA, Shaaban KS, Sayyed MI (2021) Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses. Prog Nucl Energy 141:103931. https://doi.org/10.1016/j.pnucene.2021.103931

    Article  CAS  Google Scholar 

  70. Alomairy S, Alrowaili ZA, Kebaili I, Wahab EAA, Mutuwong C, Al-Buriahi MS, Shaaban KS (2021) Synthesis of Pb3O4-SiO2-ZnO-WO3 glasses and their fundamental properties for gamma shielding applications. Silicon. https://doi.org/10.1007/s12633-021-01347-2

  71. Alomairy S, Al-Buriahi MS, Abdel Wahab EA, Sriwunkum C, Shaaban K (2021) Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram Int 47:17322–17330. https://doi.org/10.1016/j.ceramint.2021.03.045

    Article  CAS  Google Scholar 

  72. Scannell G, Koike A, Huang L (2016) Structure and thermo-mechanical response of TiO2-SiO2 glasses to temperature. J Non-Cryst Solids 447:238–247. https://doi.org/10.1016/j.jnoncrysol.2016.06.018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to princess Nourah bint Abdulrahman University, Researchers Supporting Project (Grant No. PNURSP2022R32) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Moreover, we would like to thank Taif University Researchers Supporting Project number (TURSP-2020/250), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors have taken full responsibility for the content of this manuscript.

Corresponding authors

Correspondence to Kh. S. Shaaban or Nuha Alharbiy.

Ethics declarations

The manuscript has not been published elsewhere.

Conflict of Interest

The authors declare that they have no conflict of interest.

Declaration of Competing Interest

There are no known competing financial interests among the authors.

Consent to Participate & Publication

The author’s consent to participate & publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Alotaibi, B.M., Algarni, S.A. et al. Chemical Composition, Mechanical, and Thermal Characteristics of Bioactive Glass for Better Processing Features. Silicon 14, 10817–10826 (2022). https://doi.org/10.1007/s12633-022-01784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01784-7

Keywords

Navigation