Skip to main content
Log in

Step PN Junction-Based Silicon Microring Modulator for High-Speed Application

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The prerequisite for a high-performance optical modulator is to support high data rate operation, which depends on the modulator’s index variation. A silicon microring modulator with a step based PN junction and curved coupler is designed and analysed. The step junction produces several PN junctions that would improve the effective index change for modulation. Ring modulators are sensitive to fabrication variations, and this is minimised with the help of a curved coupler. System-level link simulation analysis is performed on the proposed ring modulator design of 10 μ m radius. A 3.76 dB extinction ratio (ER) and 1.57 × 10− 12 bit error rate (BER) are achieved at a modulation efficiency of 43.4 pm/V in the proposed device when operated at a data rate of 80 Gbps. This ensures that the proposed device is compatible for high speed data centre applications. The proposed design also supports PAM4 modulation with an ER of 5.5 dB with a BER of 1.37 × 10− 3 at 100 Gbps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Data underlying the results presented in this paper are not publicly available at present but may be obtained from the authors upon reasonable request.

References

  1. Cisco Annual Internet Report - Cisco Annual Internet Report (2018–2023) White Paper. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. Accessed 24 Nov 2021

  2. Xu Q, Manipatruni S, Schmidt B et al (2007) 12.5 Gbit/s silicon micro-ring silicon modulators. Conf Lasers Electro-Optics (CLEO) 15:430. https://doi.org/10.1109/CLEO.2007.4453064

    Article  Google Scholar 

  3. Green WM, Rooks MJ, Sekaric L et al (2007) Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt Express 15:17106–17113. https://doi.org/10.1364/OE.15.017106

    Article  PubMed  Google Scholar 

  4. Chen L, Preston K, Manipatruni S et al (2009) Integrated GHz silicon photonic interconnect with micrometerscale modulators and detectors. Opt Express 17:15248–15256. https://doi.org/10.1364/OE.17.015248

    Article  CAS  PubMed  Google Scholar 

  5. Jesuwanth Sugesh RG, Sivasubramanian A (2021) Modelling and analysis of a corrugated PN junction phase shifter in silicon MZM. Silicon 17:1–9. https://doi.org/10.1007/s12633-021-00990-z

    Article  CAS  Google Scholar 

  6. Soref RI, Bennett BR (1987) Electrooptical effects in silicon. IEEE J Quantum Electron 23:123–129. https://doi.org/10.1109/JQE.1987.1073206

    Article  Google Scholar 

  7. Li J, Li G et al (2013) A 25-Gb/s monolithic optical transmitter with micro-ring modulator in 130-nm SoI CMOS. IEEE Photonics Tech L 25:1901–1903. https://doi.org/10.1109/LPT.2013.2279509

    Article  CAS  Google Scholar 

  8. Buckwalter JF, Zheng X et al (2012) A monolithic 25-Gb/s transceiver with photonic ring modulators and ge detectors in a 130-nm CMOS SOI process. IEEE J of Solid-State Circuits 47:1309–1322. https://doi.org/10.1109/JSSC.2012.2189835

    Article  Google Scholar 

  9. Sugesh RJ, Sivasubramanian A (2018) Redesigning Mach-Zehnder modulator with ring resonators. Opt Microw Tech 468:185–191. https://doi.org/10.1007/978-981-10-7293-2_20

    Article  Google Scholar 

  10. Lin H, Ogbuu O, Liu J et al (2013) Breaking the energy-bandwidth limit of electro-optic modulators: theory and a device proposal. J Lightwave Technol 31:4029–4036. https://doi.org/10.1109/JLT.2013.2280820

    Article  Google Scholar 

  11. Chen Y, Chen R et al (2018) 40Gb/s carrier depletion-based silicon micro-ring modulators. IEEE Photonics Conf 1:1–2. https://doi.org/10.1109/IPCon.2018.8527117

    Article  Google Scholar 

  12. Xiao X, Xu H et al (2012) 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt Express 20:2507–2515. https://doi.org/10.1364/OE.20.002507

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q, Schmidt B et al (2005) Micrometre-scale silicon electro-optic modulator. Nature 435:325–327. https://doi.org/10.1038/nature03569

    Article  CAS  PubMed  Google Scholar 

  14. Li G, Zheng X et al (2011) 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt Express 19:20435–20443. https://doi.org/10.1364/OE.19.020435

    Article  PubMed  Google Scholar 

  15. Xiao X, Xu H et al (2013) 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. Opt Fiber Commun Conf, OW4J-3. https://doi.org/10.1364/OFC.2013.OW4J.3

  16. Timurdogan E et al (2014) An ultralow power athermal silicon modulator. Nature Comm 5:1–11. https://doi.org/10.1038/ncomms5008

    Article  CAS  Google Scholar 

  17. Pantouvaki M, Srinivasan SA et al (2017) Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J Lightwave Technol 35:631–638. https://doi.org/10.1109/JLT.2016.2604839

    Article  CAS  Google Scholar 

  18. Dubé-Demers R et al (2016) Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica 3:622–627. https://doi.org/10.1364/OPTICA.3.000622

    Article  Google Scholar 

  19. Du J, Zheng L et al (2018) High speed and small footprint silicon micro-ring modulator assembly for space-division-multiplexed 100-Gbps optical interconnection. Opt Express 26:13721–13729. https://doi.org/10.1364/OE.26.013721

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y, Jo Y et al (2019) Parametric optimization of depletion-type Si micro-ring modulator performances. Jpn J Appl Phys 58:062006. https://doi.org/10.7567/1347-4065/ab22ce

    Article  CAS  Google Scholar 

  21. Ban Y, Verbist J et al (2019) Low-voltage 60Gb/s NRZ and 100Gb/s PAM4 O-band silicon ring modulator. IEEE Optical Interconnects Conf (OI):1–2. IEEE, 2019. https://doi.org/10.1109/OIC.2019.8714384

  22. Sun J, Kumar R et al (2019) A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J Lightwave Technol 37:110–115. https://doi.org/10.1109/JLT.2018.2878327

    Article  CAS  Google Scholar 

  23. Liu Y, Ding R et al (2014) Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s. Opt Express 22:16431–16438. https://doi.org/10.1364/OE.22.016431

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Patel D et al (2017) An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances. IEEE Photonics J 9:1–11. https://doi.org/10.1109/JPHOT.2017.2702101

    Article  Google Scholar 

  25. Pal S, Kumar A et al (2021) PAM-4 generation using an electrostatic doping aided single silicon microring modulator driven by two binary electrical signals. Optik 231:166373. https://doi.org/10.1016/j.ijleo.2021.166373

    Article  CAS  Google Scholar 

  26. Kim M et al (2021) Silicon electronic photonic integrated 25 Gbps ring modulatortransmitter with a builtin temperature controller. Photon Res 9:507–513. https://doi.org/10.1364/PRJ.413407

    Article  Google Scholar 

  27. Romero-García S et al (2017) High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range. Opt Express 42:81–84. https://doi.org/10.1364/OL.42.000081

    Article  Google Scholar 

  28. Nojić J, Azadeh SS et al (2020) Fabrication tolerant high-speed SiP ring modulators and optical add-drop multiplexers for WDM applications. Silicon Photonics 11285:112850A. https://doi.org/10.1117/12.2543324

    Article  Google Scholar 

  29. Sonkin E, Sadot D et al (2019) MZM optimization of PAM-4 transmission in data center interconnect. Appl Sci 9:637. https://doi.org/10.3390/app9040637

    Article  CAS  Google Scholar 

  30. Yuvan Y et al (2021) A 100 Gb/s PAM4 two-segment silicon microring resonator modulator. IEEE Photon Conf (IPC):1–2. https://doi.org/10.1109/IPC48725.2021.9592844

  31. Li H et al (2021) A 4×50 Gb/s all-silicon ring-based WDM transceiver with CMOS IC. In: 2021 European conference on optical comm (ECOC), pp 1–3. https://doi.org/10.1109/ECOC52684.2021.9605947

  32. Deniel L, Gay M et al (2019) DAC-less PAM-4 generation in the Oband using a silicon Mach-Zehnder modulator. Opt Express 27:9740–9748. https://doi.org/10.1364/OE.27.009740

    Article  CAS  PubMed  Google Scholar 

  33. Shao S, Ding J et al (2017) Optical PAM-4 signal generation using a silicon Mach-Zehnder optical modulator. Opt Express 25:23003–23013. https://doi.org/10.1364/OE.25.023003

    Article  CAS  PubMed  Google Scholar 

  34. Zheng L, Ding J et al (2017) Silicon PAM-4 optical modulator driven by two binary electrical signals with different peak-to-peak voltages. Opt Lett 42:2213–2216. https://doi.org/10.1364/OE.25.023003

    Article  CAS  PubMed  Google Scholar 

  35. Zheng D et al (2020) Demonstration of a push-pull silicon dual-ring modulator with enhanced optical modulation amplitude. J Lightwave Technol 38:3694–3700. https://doi.org/10.1109/JLT.2020.2978149

    Article  CAS  Google Scholar 

  36. Lumerical software. https://www.lumerical.com/products/. Accessed 24 Nov 2021

  37. 100GPSM4 technical specifications. http://psm4.org/100G-PSM4-Specification-2.0.pdf. Accessed 24 Nov 2021

  38. 100GCWDM4 technical specifications. Available: http://www.cwdm4-msa.org/files/CWDM4_MSA_Technical_Spec_1p0.pdf. Accessed 24 Nov 2021

  39. Rao A, Patil A et al (2016) High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt Lett 41:5700–3. https://doi.org/10.1364/OL.41.005700

    Article  CAS  PubMed  Google Scholar 

  40. Srinivasan R et al (2021) Numerical investigation on Ge2Sb2Te5- assisted reconfigurable asymmetric directional coupler-based switches. Opt Eng 60:055104. https://doi.org/10.1117/1.OE.60.5.055104

    Article  Google Scholar 

  41. Grosges T, Vial A, Barchiesi D (2005) Models of near- field spectroscopic studies: comparison between finite-element and finite-difference methods. Opt Express 13:8483–97. https://doi.org/10.1364/OPEX.13.008483

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Z, Brown TG (2002) Full-vectorial finite-difference analysis of micro structured optical fibers. Opt Express 10:853–864. https://doi.org/10.1364/OE.10.000853

    Article  PubMed  Google Scholar 

  43. Jesuwanth Sugesh RG, Sivasubramanian A (2021) High modulation efficient silicon MZM with core-based split PN junction phase shifter. Silicon 1:9. https://doi.org/10.1007/s12633-021-01482-w

    Article  CAS  Google Scholar 

  44. Lumerical Mesh Detail. Available: https://support.lumerical.com/hc/en-us/articles/360034382614/. Accessed 24 Nov 2021

  45. Lumerical Meshing for Mode solver. Available: https://support.lumerical.com/hc/en-us/articles/360034917233-MODE-Finite-Difference-Eigenmode-FDE-solver-introdu. Accessed 24 Nov 2021

Download references

Acknowledgements

This work was performed on Lumerical software provided by Vellore Institute of Technology, Chennai. The authors are grateful to the institution.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The design proposal, simulation analysis and manuscript preparation are performed by Jesuwanth Sugesh R G guided by Sivasubramanian A. The simulation analysis was verified by Balaji V R.

Corresponding author

Correspondence to Sivasubramanian A..

Ethics declarations

The authors declare that all procedures followed were in accordance with the ethical standards.

Ethics approval and consent to participate

Authors declare no research involving human participants and/or animals was conducted. All authors are voluntarily participating for the submission of this research work.

Consent for Publication

Both the authors agree for the publication of the manuscript by the journal.

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R. G., J.S., A., S. & Balaji, V.R. Step PN Junction-Based Silicon Microring Modulator for High-Speed Application. Silicon 14, 10651–10660 (2022). https://doi.org/10.1007/s12633-022-01735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01735-2

Keywords

Navigation