Skip to main content
Log in

Performance Improvement of Graphene/Silicon Solar Cells via Inverted Pyramid Texturation Array

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Graphene/silicon (Gr/Si) solar cells have aroused extensive research interest due to their simple structure and great potential for low-cost photovoltaic applications. Enhancing light absorption is one of the mainstream methods to improve the performance of Gr/Si solar cell. In this paper, a large scale inverted pyramid array (IPa) was prepared by a simple and cost-effective one-step copper assisted chemical etching method, followed by the surface of the silicon inverted pyramid structure smoothed with a concentrated KOH treatment. Gr/SiIPa solar cells with and without KOH smoothing were both prepared as a comparison. The results show that KOH treated SiIPa has a better Schottky junction contact between graphene and the SiIPa surface, thus silicon surface defects and carrier recombination of devices were reduced. Compared with Gr/Si solar cells, the power conversion efficiency (PCE) of Gr/SiIPa device is improved by 42% with KOH smoothing procedure. Finally, the PCE of HNO3 doping Gr/SiIPa devices reached 5.58%. This study provides guide value for improving the light trap capacity of Gr/Si solar cells and simple surface smoothing treatment for inverted pyramid texturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data and materials for this work are available.

Code Availability

Not applicable.

References

  1. Xi F, Li S, Ma W, Chen Z, Wei K, Wu J (2021) A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy 201(9):105553

    Article  CAS  Google Scholar 

  2. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H, He H, Wang N, Jiang K, Lin H, Zhang H, Guo Z (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Func Mater 28(11):1706777

    Article  Google Scholar 

  3. Powell DM, Winkler MT, Choi HJ, Simmons CB, Needleman DB, Buonassisi T (2012) Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ Sci 5(3):5874–5883

    Article  Google Scholar 

  4. Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y (2017) The Light-Induced Field-Effect Solar Cell Concept-Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency. Adv Mater 29(18):1606370.1-1606370.7

    Article  Google Scholar 

  5. Liu J, Ji Y, Liu Y, Xia Z, Han Y, Li Y, Sun B (2017) Doping-Free Asymmetrical Silicon Heterocontact Achieved by Integrating Conjugated Molecules for High Efficient Solar Cell. Adv Energy Mater 1700311:1–7

    Google Scholar 

  6. Li C, He Z, Wang Q, Liu J, Li S, Chen X, Ma W, Chang Y (2021) Performance improvement of PEDOT:PSS/N-Si heterojunction solar cells by alkaline etching. SILICON 1:1–9

    CAS  Google Scholar 

  7. Liu J, Yao Y, Xiao S, Gu X (2018) Review of status developments of high-efficiency crystalline silicon solar cells. J Phys D Appl Phys 51(12):123001

    Article  Google Scholar 

  8. Xu D, Yu X, Gao D, Li C, Zhong M, Zhu H, Yuan S, Lin Z, Yang D (2016) Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. J Mater Chem A 4(27):10558–10565

    Article  CAS  Google Scholar 

  9. Chen CC, Aykol M, Chang CC, Levi AFJ, Cronin Stephen B (2011) Graphene-silicon Schottky diodes. Nano Lett 11(5):1863–1867

    Article  CAS  PubMed  Google Scholar 

  10. Luongo G, Grillo A, Urban F, Giubileo F, Bartolome AD (2019) Effect of silicon doping on graphene/silicon Schottky photodiodes. Mater Today: Proc 20:82–86

    Google Scholar 

  11. Behura SK, Wang C, Wen Y, Berry V (2019) Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat Photonics 13(5):312–318

    Article  CAS  Google Scholar 

  12. Geng C, Shang Y, Qiu JJ, Wang Q, Chen X, Li S, Ma W, Fan H, Omer AAA, Chen R (2020) Carbon quantum dots interfacial modified graphene/silicon Schottky barrier solar cell. J Alloys Compd 835:155268

    Article  CAS  Google Scholar 

  13. Zhang X, Xie C, Jie J, Zhang X, Wu Y, Zhang W (2013) High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J Mater Chem A 1(22):6593–6601

    Article  CAS  Google Scholar 

  14. Kong X, Zhang L, Liu B, Gao H, Zhang Y, Yang H, Song X (2019) Graphene/Si Schottky solar cells: a review of recent advances and prospects. RSC Adv 9(2):863–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li S, Ma W, Chen X, Xie K, Li Y, He X, Yang X, Lei Y (2016) Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl Surf Sci 369(30):232–240

    Article  CAS  Google Scholar 

  16. Ozdemir B, Kulakci M, Turan R, Unalan HE (2011) Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15):155606

    Article  PubMed  Google Scholar 

  17. Geng X, Li M, Zhao L, Bohn PW (2011) Metal-assisted chemical etching using tollen’s reagent to deposit silver nanoparticle catalysts for fabrication of quasi-ordered silicon micro/nanostructures. J Electron Mater 40(12):2480–2485

    Article  CAS  Google Scholar 

  18. Chen W, Liu Y, Wu J, Chen Q, Zhao Y, Wang Y, Du X (2019) High-Efficient Solar Cells Textured by Cu/Ag-Cocatalyzed Chemical Etching on Diamond Wire Sawing Multicrystalline Silicon. ACS Appl Mater Interfaces 11:10052–10058

    Article  CAS  PubMed  Google Scholar 

  19. Garnett E, Yang P (2010) Light Trapping in Silicon Nanowire Solar Cells[J]. Nano Lett 10(3):1082–1087

    Article  CAS  PubMed  Google Scholar 

  20. He X, Li S, Ma W, Ding Z, Yu J, Qin B, Yang J, Zou Y, Qiu J (2017) A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Mater Lett 196:269–272

    Article  CAS  Google Scholar 

  21. He X, Zou Y, Sheng G, Feng Q, Qiu J, He Y, Li S, Ma W (2017) Research on controllable preparation and antireflection properties of zigzag SiNWs arrays. Integr Ferroelectr 182:65–74

    Article  CAS  Google Scholar 

  22. Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D (2011) Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl Mater Interfaces 3(3):721–725

    Article  CAS  PubMed  Google Scholar 

  23. Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H, Liu L (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl Phys Lett 99:233505–233511

    Article  Google Scholar 

  24. Xie C, Jie J, Nie B, Yan T, Li Q, Lv P, Li F, Wang M, Wu C, Wang L, Luo L (2012) Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions[J]. Appl Phys Lett 100(19):3051

    Article  Google Scholar 

  25. Dong HS, Ju HK, Kim JH, Chan WJ, Sang WS, Lee HS, Kim S, Choi SH (2017) Graphene/porous silicon Schottky-junction solar cells. J Alloy Compd 715:291–296

    Article  Google Scholar 

  26. Mavrokefalos A, Han SE, Yerci S, Branham MS, Chen G (2012) Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications [J]. Nano letters 12(6):2792

    Article  CAS  PubMed  Google Scholar 

  27. Han SE, Chen G (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics [J]. Nano Lett 10(3):1012–1015

    Article  CAS  PubMed  Google Scholar 

  28. Sun Z, Raji A, Zhu Y, Xiang C, Yan Z, Kittrell C, Samuel ELG, Tour JM (2012) Large-Area Bernal-Stacked Bi-, Tr-, and Tetralayer Graphene. ACS Nano 6(11):9790–9796

    Article  CAS  PubMed  Google Scholar 

  29. Qi JL, Zheng WT, Zheng XH, Wang X, Tian HW (2011) Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl Surf Sci 257(15):6531–6534

    Article  CAS  Google Scholar 

  30. Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50(3):869–874

    Article  CAS  Google Scholar 

  31. Cao Y, Zhou Y, Liu F, Zhou Y, Zhang Y, Liu Y, Guo Y (2015) Progress and Mechanism of Cu Assisted Chemical Etching of Silicon in a Low Cu2+ Concentration Region[J]. ECS J Solid State Sci Technol 4(8):331–336

    Article  Google Scholar 

  32. Huang ZP, Geyer N, Liu LF, Li MY, Zhong P (2010) Metal-assisted electrochemical etching of silicon [J]. Nanotechnology 21(46):465301

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Liu Y, Chen Q, Chen W, Yang L, Wang Y, He M, Du X (2018) The orientation and optical properties of inverted-pyramid-like structures on multi-crystalline silicon textured by Cu-assisted chemical etching[J]. Sol Energy 171(9):675–680

    Article  CAS  Google Scholar 

  34. Zheng H, Han M, Zheng P, Zheng L, Qin H, Deng L (2014) Porous silicon templates prepared by Cu-assisted chemical etching[J]. Mater Lett 118:146–149

    Article  CAS  Google Scholar 

  35. Li JY, Hung CH, Chen CY (2017) Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement[J]. Sci Rep 7(1):17177

    Article  PubMed  PubMed Central  Google Scholar 

  36. Backes A, Schmid U (2014) Impact of doping level on the metal assisted chemical etching of p-type silicon. Sensors Actuators B Chem 193:883–887

    Article  CAS  Google Scholar 

  37. Omer AAA, Yang Y, Sheng G, Li S, Yu J, Ma W, Qiu J, Kolaly WE (2019) Nano-texturing of silicon wafers via one-step copper assisted chemical etching. SILICON 12:231–238

    Article  Google Scholar 

  38. Li B, Niu G, Sun L, Yao L, Wang C, Zhang Y (2018) Design optimization and antireflection of silicon nanowire arrays fabricated by au-assisted chemical etching. Mater Sci Semicond Process 82:1–8

    Article  CAS  Google Scholar 

  39. Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516

    Article  CAS  Google Scholar 

  40. Chen W, Liu Y, Yang L, Wu J, Chen Q, Zhao Y, Wang Y, Du X (2018) Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si[J]. Sci Rep 8:3408

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xie C, Zhang X, Wu Y, Zhang X, Zhang X, Wang Y, Zhang W, Gao P, Han Y, Jie J (2013) Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. J Mater Chem A 1(30):8567

    Article  CAS  Google Scholar 

  42. Jiao K, Wang X, Yu W, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721

    Article  CAS  Google Scholar 

  43. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335–3345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work from the National Natural Science Foundation of China (Grant No. 51974143, 51904134, 61764009, 51762043); National Key R&D Program of China (No.2018YFC1901801, No.2018YFC1901805); Major Science and Technology Projects in Yunnan Province (No.2019ZE007, No. 202103AA080004, No. 202102AB080016); Key Project of Yunnan Province Natural Science Fund (No. 2018FA027); Yunnan Ten Thousand Talents Project (YNWR-QNBJ-2018-111) and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Li: Data curation, Writing—original draft. Yichen Ma: Conceptualization. Xiyao Zhang: Software. Xiuhua Chen: Funding acquisition, Visualization, Investigation. Fengshuo Xi: Supervision, Writing -review & editing. Shaoyuan Li: Funding acquisition, Supervision, Writing -review & editing. Wenhui Ma: Funding acquisition, Supervision. Yuanchih Chang: Writing—review & editing.

Corresponding authors

Correspondence to Fengshuo Xi or Shaoyuan Li.

Ethics declarations

Ethics Approval

The authors declare that the manuscript is not currently being considered for publication in another journal.

Consent to Participate

I testify on behalf of all co-authors that our article submitted to Silicon.

Consent for Publication

The authors agree that the manuscript should be published in Silicon.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Uniform inverted pyramid arrays reducing the cell reflectance.

• The results show that KOH smoothed SiIPa has a better Schottky junction contact between graphene and the SiIPa surface.

• the silicon surface defects and carrier recombination of devices were reduced after KOH smoothed SiIPa.

• The PCE of Gr/SiIPa solar cells could reach up to 5.58%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ma, Y., Zhang, X. et al. Performance Improvement of Graphene/Silicon Solar Cells via Inverted Pyramid Texturation Array. Silicon 14, 10485–10493 (2022). https://doi.org/10.1007/s12633-022-01725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01725-4

Keywords

Navigation