Skip to main content

Advertisement

Log in

A Polyhedral Oligomeric Silsesquioxane (POSS) Doped with Cerium(III) / Fe(II) and its Application as an Electrochemical Sensor for L-dopamine

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A Polyhedral oligomeric silsesquioxane (POSS) doped with cerium (III) was synthesized and reacted with potassium hexacyanoferrate (SCeH). The vibrational, structural, morphological and electrochemical properties of this compound were studied by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopic, X-ray diffraction, Scanning electron microscopy, Energy dispersive X-ray and voltammetry using a modified graphite paste electrode. The modified paste electrode containing SCeH (SCeGPE) verified one redox pair with formal potential Eθ’ = 0.33 V ± 0.01 (vs Ag/AgCl, KCl, 1.0 mol L−1; v = 100 mV s−1), attributed to the Fe2+/Fe3+ process in the presence of Cerium (III) cyanoferrate. The redox couple presents a high sensitivity and wide response range in the detection of L-dopamine. The limit of detection and amperometric sensibility were established at 4.08 × 10–4 mol L−1 and 8.27 × 10−6 mol L−1 employing the voltammetric and chronoamperometric methods respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the published article.

Code Availability

Not applicable.

References 

  1. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430. https://doi.org/10.1021/cr00037a012

    Article  CAS  Google Scholar 

  2. Provatas A, Matisons JG (1997) Silsesquioxanes: Synthesis and Applications. Trends Polym Sci 5:327–332

    CAS  Google Scholar 

  3. Liu J, Hua D, Zhang Y, Japip S, Chung TS (2018) Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules. Adv Mater 30:1705933. https://doi.org/10.1002/adma.201705933

  4. Feher FJ, Walzer JF (1991) Synthesis and Characterization of Vanadium-Containing Silsesquioxanes. Inorg Chem 30:1689–1694. https://doi.org/10.1021/ic00008a005

    Article  CAS  Google Scholar 

  5. Gravel MC, Laine RM (1997) Synthesis and Characterization of a Nem Amino-Functionalized Silsesquioxane. Abstr Pap Am Chem S 38:155–156

    CAS  Google Scholar 

  6. Feher FJ, Budzichowski TA (1995) Silasesquioxanes as Ligands in Inorganic and Organometallic Chemistry. Polyhedron 14:3239–3253. https://doi.org/10.1016/0277-5387(95)85009-0

    Article  CAS  Google Scholar 

  7. Li G, Wang L, Ni H, Pittman CU Jr (2001) Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review. J Inorg Organomet Polym 11:123–154. https://doi.org/10.1023/A:1015287910502

    Article  CAS  Google Scholar 

  8. Bronstein LM, Linton CN, Karlinsey R, Ashcraft E, Stein BD, Svergun DI, Kozin M, Khotina IA, Spontak RJ, Werner-Zwanziger U, Zwanziger JW (2003) Controlled Synthesis of Novel Metalated Poly(aminohexyl)-(aminopropyl)Silsesquioxane Colloids. Langmuir 19:7071–7083. https://doi.org/10.1021/1a034291b

    Article  CAS  Google Scholar 

  9. Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, Riccardi CC, Willians RJJ (2000) Cagelike Precursors of High-Molar-Mass Silsesquioxanes Formed by the Hydrolytic Condensation of Trialkoxysilanes. Macromolecules 33:1940–1947. https://doi.org/10.1021/ma9912507

    Article  CAS  Google Scholar 

  10. Moradi M, Woods BM, Rathnayake H, Williams SJ, Willing GA (2019) Effect of Functionalization on the Properties of Silsesquioxane: A Comparison to Silica. Colloid Polym Sci 297:697–704. https://doi.org/10.1007/s00396-019-04489-3

    Article  CAS  Google Scholar 

  11. Liu Z, Ma S, Chen L, Xu J, Ou J, Ye M (2019) Porous Styryl-Linked Polyhedral Oligomeric Silsesquioxane (POSS) Polymers Used as a Support for Platinum Catalysts. Mater Chem Front 3:851–859. https://doi.org/10.1039/C8QM00622A

    Article  CAS  Google Scholar 

  12. Kim S, Choi S, Rhee H (2018) Sulfonated Poly(etheretherketone) Based Nanocomposite Membranes Containing POSS-AS for Polymers Electrolyte Membrane Fuel Cells (PEMFC). J Membr Sci 566:69–76. https://doi.org/10.1016/j.memsci.2018.08.040

    Article  CAS  Google Scholar 

  13. Kanehashi S, Tomita Y, Obokata K, Kidesaki T, Sato S, Miyakoshi T, Nagai K (2013) Effect of Substituted Groups on Characterization and Water Vapor Sorption Property of Polyhedral Oligomeric Silsesquioxane (Poss)-Containing Methacryl Polymers Membranes. Polymer 54:2315–2323. https://doi.org/10.1016/j.polymer.2013.03.002

    Article  CAS  Google Scholar 

  14. Naka K, Itoh H, Chujo Y (2002) Self-Organization of Spherical Aggregates of Palladium Nanoparticles with a Cubic Silsesquioxane. Nano Lett 2:1183–1186. https://doi.org/10.1021/nl025713p

    Article  CAS  Google Scholar 

  15. Kuo S (2016) Building Blocks Precisely from Polyhedral Oligomeric Silsesquioxane Nanoparticles. ACS Cent Sci 2:62–64. https://doi.org/10.1021/acscentsci.6b00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuo S, Tsai H (2010) Control of Peptide Secondary Structure on Star Shape Polypeptides Tethered to Polyhedral Oligomeric Silsesquioxane Nanoparticle Through Click Chemistry. Polymer 51:5695–5704. https://doi.org/10.1016/j.polymer.2010.10.005

    Article  CAS  Google Scholar 

  17. Nakamura R, Narikiyo H, Gon M, Tanaka K, Chujo Y (2019) An Optical Sensor for Discriminating the Chemical Compositions and Sizes of Plastic Particles in Water Based on Water-Soluble Networks Consisting of Polyhedral Oligomeric Silsesquioxane Presenting Dual-Color Luminescense. Mater Chem Front 3:2690–2695. https://doi.org/10.1039/C9QM00510B

    Article  CAS  Google Scholar 

  18. Magossi MS, Fernandes DS, do Carmo DR (2019) Synthesis of a Novel Hybrid Nanocomposite Based on Copper Pentacyanonitrosylferrate and Octa(aminopropyl)Silsesquioxane and its Behavior on L-Cysteine Electrooxidation. Solid State Sci 95:105931. https://doi.org/10.1016/j.solidstatesciences.2019.105931

    Article  CAS  Google Scholar 

  19. Kajetanowicz A, Czaban J, Krishnan GR, Malińska M, Woźniak K, Siddique H, Peeva LG, Livingston AG, Grela K (2013) Batchwise and Continuous Nanofiltration of POSS-Tagged Grubbs-Hoveyda-type Olefin Metathesis Catalysts. Catal Chem Sus Chem 6:182–192. https://doi.org/10.1002/cssc.201200466

    Article  CAS  Google Scholar 

  20. Calabrese C, Liotta LF, Giacalone F, Gruttadauria M, Aprile C (2019) Supported Polyhedral Oligomeric Silsesquioxane-Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO2. ChemCatChem 11:560–567. https://doi.org/10.1002/cctc.201801351

    Article  CAS  Google Scholar 

  21. Xia S, Yang Y, Zhu W, Lü C (2020) Quaternized Polyhedral Oligomeric Silsesquioxanes Stabilized Pd Nanoparticles as Eficiente Nanocatalysts for Reduction Reaction. Colloids Surf A 585:124110. https://doi.org/10.1016/j.colsurfa.2019.124110

    Article  CAS  Google Scholar 

  22. Ismagilov IZ, Matus EV, Kuznetsov VV, Yashnik SA, Kerzhentsev MA, Gerritsen G, Abbenhuis HCL, Ismagilov ZR (2017) Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production. Eurasian Chem Technol J 19:3–16. https://doi.org/10.18321/ectj497

    Article  CAS  Google Scholar 

  23. Ghanbari H, Marashi SM, Rafiei Y, Chaloupka K, Seifalian AM (2011) Biomedical Application of Polyhedral Oligomeric Silsesquioxane Nanoparticles. Adv Silic Sci 3:363–399. https://doi.org/10.1007/978-90-481-3787-9_9

    Article  CAS  Google Scholar 

  24. Kowada T, Maeda H, Kikuchi K (2015) BODIPY-Based Probes for Fluorescence Imaging of Biomolecules in Living Cells. Chem Soc Rev 44:4953–4972. https://doi.org/10.1039/C5CS00030K

    Article  CAS  PubMed  Google Scholar 

  25. McCusker C, Carroll JB, Rotello VM (2005) Cationic Polyhedral Oligomeric Silsesquioxane (POSS) Units as Carriers for Drug Delivery Processes. Chem Commun 8:996–998. https://doi.org/10.1039/B416266H

    Article  Google Scholar 

  26. Tanaka K, Inafuku K, Naka K, Chujo Y (2008) Enhancement of Entrapping Ability of Dendrimers by a Cubic Silsesquioxane Core. Org Biomol Chem 6:3899–3901. https://doi.org/10.1039/B812349G

    Article  CAS  PubMed  Google Scholar 

  27. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in Cancer Therapy and Diagnosis. Adv Drug Delivery Rev 54:631–651. https://doi.org/10.1016/s0169-409x(02)00044-3

    Article  CAS  Google Scholar 

  28. Ghanbari H, de Mel A, Seifalian AM (2011) Cardiovascular Application of Polyhedral Oligomeric Silsesquioxane Nanomaterials: a Glimpse Into Prospectize Horizons. Int J Nanomed 6:775–789. https://doi.org/10.2147/IJN.S14881

    Article  CAS  Google Scholar 

  29. Franco FS, Fernandes DS, do Carmo DR (2020) A Modified Hybrid Silsesquioxane/Histidine Composite for Copper and Zinc Adsorption and it Behavior in the Electro-Oxidation of Ascorbic Acid. Mater Sci Eng C 111:110739. https://doi.org/10.1016/j.msec.2020.110739

    Article  CAS  Google Scholar 

  30. Zhao H, Deng N, Yan J, Kang W, Ju J, Wang L, Li Z, Cheng B (2019) Effect of Octaphenylpolyhedral Oligomeric Silsesquioxane on the Electrospun Poly-M-Phenylene Isophthalamid Separators for Lithium-Ion Batteries with High Safety and Excelente Electrochemical Performance. Chem Eng J 356:11–21. https://doi.org/10.1016/j.cej.2018.09.010

    Article  CAS  Google Scholar 

  31. do Carmo DR, Barbosa PFP, Cumba LR (2020) Electrochemical Behavior of Titanium (IV) Silsesquioxane Occluded in the MCM-41 Cavity and their Application in the Electro-Oxidation of Sulfite and Dipyrone Compounds. Silicon 12:1111–1123. https://doi.org/10.1007/s12633-019-00215-4

    Article  CAS  Google Scholar 

  32. Wang M, Chi H, Joshy KS, Wang F (2019) Progress in the Synthesis of Bifunctionalized Polyhedral Oligomeric Silsesquioxane. Polymers 11:2098. https://doi.org/10.3390/polym11122098

    Article  CAS  PubMed Central  Google Scholar 

  33. Cordes DB, Lickiss PD, Rataboul F (2010) Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem Rev 110:2081–2173. https://doi.org/10.1021/cr900201r

    Article  CAS  PubMed  Google Scholar 

  34. Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral Oligomeric Silsesquioxanes (POSS)-Containing Nanohybrid Polymers. Adv Polym Sci 201:225–296. https://doi.org/10.1007/12_077

    Article  CAS  Google Scholar 

  35. Levitsky MM, Yalymov AI, Kulakova AN, Petrov AA, Bilyachenko AN (2017) Cage-Like Metallasilsesquioxanes in Catalysis: A Review. J Mol Catal A: Chem 426:297–304. https://doi.org/10.1016/j.molcata.2016.06.016

    Article  CAS  Google Scholar 

  36. Du Y, Liu H (2020) Cage-Like Silsesquioxanes-Based Hybrid Materials. Dalton Trans. https://doi.org/10.1039/d0dt00587h

    Article  PubMed  Google Scholar 

  37. Ouyang J, Haotian S, Liang Y, Commisso A, Li D, Xu R, Yu D (2017) Recent Progress in Metal-Containing Silsesquioxanes: Preparation and Application. Curr Org Chem 28:2829–2848. https://doi.org/10.2174/1385272821666170619084813

    Article  CAS  Google Scholar 

  38. Fina A, Monticelli O, Camino G (2010) POSS-Based Hybrids by Melt/Reactive Blending. J Mater Chem 20:9297–9305. https://doi.org/10.1039/C0JM00480D

    Article  CAS  Google Scholar 

  39. Kuo S, Chang F (2011) POSS Related Polymer Nanocomposites. Prog Polym Sci 12:1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002

    Article  CAS  Google Scholar 

  40. Laine RM, Roll MF (2011) Polyhedral Phenylsilsesquioxanes. Macromolecules 44:1073–1109. https://doi.org/10.1021/ma102360t

    Article  CAS  Google Scholar 

  41. Hartmann-Thompson C (2011) Applications of Polyhedral Oligomeric Silsesquioxanes. Adv Silicon Sci 3, 21 ed

  42. Tanaka K, Chujo Y (2012) Advanced Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). J Mater Chem 22:1733–1746. https://doi.org/10.1039/C1JM14231C

    Article  CAS  Google Scholar 

  43. Shi H, Yang J, You M, Li Z, He C (2020) Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. ACS Mater Lett 2:296–316. https://doi.org/10.1021/acsmaterialslett.9b00491

    Article  CAS  Google Scholar 

  44. Kawakami Y, Seino H, Ohtaki K, Kabe Y (2017) Synthetic Application of Silicates/Silanolates and their Hydrolyzed Polysilanol Siloxanes for Polyhedral Oligomeric Silsesquioxanes (POSSs). Heteroat Chem 28:21373. https://doi.org/10.1002/hc.21373

    Article  CAS  Google Scholar 

  45. Goodgame DML, Kealey S, Lickiss PD, White AJP (2008) Transition Metal Complexes of Cubic (T8) Oligo-Silsesquioxanes. J Mol Struct 890:232–239. https://doi.org/10.1016/j.molstruc.2008.05.013

    Article  CAS  Google Scholar 

  46. Moeller T (1973) The Chemistry of the Lanthanides, Pergamon Texts in Inorganic Chemistry, 1Ed 26

  47. Silvestrini DR, da Silveira TFS, Bicalho UO, do Carmo DR (2015) Voltammetric Behavior of a Chemically Modified Silsesquioxane with 4-Amino-5-Phenyl-4h-[1,2,4]-Triazole-3-Thiol and its Application for Detection of L-Dopamine. Int J Electrochem Sci 10:2839–2858

    CAS  Google Scholar 

  48. do Carmo DR, da Silva RM, Stradiotto NR (2003) Electrocatalytic and voltammetric determination of sulfhydryl compounds through iron nitroprusside modified graphite paste electrode. J Braz Chem Soc 14:616–620. https://doi.org/10.1590/S0103-50532003000400019

    Article  CAS  Google Scholar 

  49. Feher FJ, Wyndham KD, Soulivong D, Nguyen F (1999) Syntheses of Highly Functionalized Cube-Octameric Polyhedral Oligosilsesquioxanes (R8Si8O12). J Chem Soc Dalton Trans 9:1491–1498. https://doi.org/10.1039/A807302C

    Article  Google Scholar 

  50. Wang W, Hai X, Mao Q, Chen M, Wang J (2015) Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Dots for Cell Imaging. ACS Appl Mater Interfaces 7:16609–16616. https://doi.org/10.1021/acsami.5b04172

    Article  CAS  PubMed  Google Scholar 

  51. Bahrami Z, Akbari A, Eftekhari-Sis B (2019) Double Network Hydrogel of Sodium Alginate/Polyacrylamide Cross-Linked with POSS: Swelling, Dye Removal and Mechanical Properties. Int J Biol Macromol 129:187–197. https://doi.org/10.1016/j.ijbiomac.2019.02.046

    Article  CAS  PubMed  Google Scholar 

  52. Chandradass J, Nam B, Kim KH (2009) Fine Tuning of Gadolinium Doped Ceria Electrolyte Nanoparticles Via Reverse Microemulsion Process. Colloids Surf A Physicochem Eng Asp 348:130–136. https://doi.org/10.1016/j.colsurfa.2009.07.012

    Article  CAS  Google Scholar 

  53. Pujar MS, Hunagund S, Desai VR, Patil S, Sidarai AH (1942) One-step Synthesis and Characterizations of Cerium Oxide Nanoparticles in Na Ambiente Temperature Via Co-Precipitation Method. AIP Conf Proc 1:050026. https://doi.org/10.1063/1.5028657

    Article  CAS  Google Scholar 

  54. Li J, Dong S, Wang Y, Dou X, Hao H (2020) Nitrate Removal from Aqueous Solutions by Magnetic Cationic Hydrogel: Effect of Electrostatic Adsorption and Mechanism. Int J Environ Sci 91:177–188. https://doi.org/10.1016/j.jes.2020.01.029

    Article  CAS  Google Scholar 

  55. Feng L, Gu M, Yang Y, Liang G, Zhang J, Zhu J (2009) Electrochemical Synthesis for Florwerlike and Fusiform Christmas-Tree-Like Cerium Hexacyanoferrate(II). J Phys Chem C 113:8743–8749. https://doi.org/10.1021/jp900925p

    Article  CAS  Google Scholar 

  56. Gerber SJ, Erasmus E (2018) Electronic Effects of Metal Hexacyanoferrates: An XPS and FTIR study. Mater Chem Phys 203:73–81. https://doi.org/10.1016/j.matchemphys.2017.09.029

    Article  CAS  Google Scholar 

  57. Yang S, Zhang L, Yang Q, Zhang Z, Chen B, Lv P, Zhu W, Wang G (2015) Graphene Aerogel Prepared by Termal Evaporation of Graphene Oxide Suspension Containg Sodium Bicarbonate. J Mater Chem A 3:7950–7958

    Article  CAS  Google Scholar 

  58. Deng Y, Han D, Deng Y, Zhang Q, Chen F, Fu Q (2020) Facile One-Step Preparation of Robust Hydrophobic Cotton Fabrics by Covalente Bonding Polyhedral Oligomeric Silsesquioxane for Ultrafast Oil/Water Separation. Chem Eng J 379:122391. https://doi.org/10.1016/j.cej.2019.122391

    Article  CAS  Google Scholar 

  59. Sahari SK, Kashif M, Sawawi M, Fathi NAFNZ, Hamzah A, Majlis BY, Sutan NM, Sapawi R, Kipli K, Halim NAA, Junaidi N, Masra M (2017) Stability of Chlorine termination on Ge(100) and Ge(111) Surfaces. MATEC Web Conf 87:05005. https://doi.org/10.1051/matecconf/20178705005

    Article  Google Scholar 

  60. Wu J, Potsi G, Gengler RYN, Gournis D, Rudolf P (2020) Insertion of Iron Decorated Organic-Inorganic Cage-Like Polyhedral Oligomeric Silsesquioxanes Between Clay Platelets by Langmuir Schaefer Deposition. Mater 13:216. https://doi.org/10.3390/ma13010216

    Article  CAS  Google Scholar 

  61. Boase NRB, Torres MDT, Fletcher NL, Fuente-Nunez C, Fairfull-Smith KE (2018) Polynitroxide Copolymers to Reduce Biofilm Fouling on Surfaces. Polym Chem 9:5308–5318. https://doi.org/10.1039/C8PY01101J

    Article  CAS  Google Scholar 

  62. Cano A, Rodríguez-Hernández J, Shchukarev A, Reguera E (2019) Intercalation of Pyrazine in Layered Copper Nitroprusside: Synthesis, Crystal Structure and XPS Study. J Solid State Chem 273:1–10. https://doi.org/10.1016/j.jssc.2019.02.015

    Article  CAS  Google Scholar 

  63. Brunsvold AL, Minton TK, Gouzman I, Grossman E, Gonzalez R (2004) Na Investigation of the Resistance of Polyhedral Oligomeric Silsesquioxane Polyimide to Atomic-Oxygen Attack. High Perform Polym 16:303–318. https://doi.org/10.1177/0954008304044121

    Article  CAS  Google Scholar 

  64. Yu C, Ju P, Wan H, Chen L, Li H, Zhou H, Chen J (2020) Enhanced Atomic Oxygen Resistance and Tribological Properties of PAI/PTFE Composites Reinforced by POSS. Prog Org Coat 139:105427. https://doi.org/10.1016/j.porgcoat.2019.105427

    Article  CAS  Google Scholar 

  65. Takita Y, Qing X, Takami A, Nishiguchi H, Nagaoka K (2005) Oxidative Dehydrogenation of Isobutane to Isobutene III: Reaction Mechanism over CePO4 Catalyst. Appl Catal A 296:63–69. https://doi.org/10.1016/j.apcata.2005.07.049

    Article  CAS  Google Scholar 

  66. Datta M, Datta A (1990) In Situ FTIR and XPS Studies of the Hexacyanoferrate Redox System. J Phys Chem 94:8203–8207. https://doi.org/10.1021/j100384a041

    Article  CAS  Google Scholar 

  67. Periasamy AP, Wei J, Chen S (2011) Alcohol Dehydrogenase Immobilized at Cerium Hexacyanoferrate (II) Nanoparticles Incorporated Poly-L-Lysine Film for Voltammetric Ethanol Determination. Int J Electrochem Sci 6:4422–4437

    CAS  Google Scholar 

  68. Vo V, Minh NV, Lee HI, Kim JM, Kim Y, Kim SJ (2008) A New Route for Obtaining Prussian Blue Nanoparticles. Mater Chem Phys 107:6–8. https://doi.org/10.1016/j.matchemphys.2007.07.002

    Article  CAS  Google Scholar 

  69. do Carmo DR, Paim LL, Dias Filho NL, Stradiotto NR (2007) Preparation, Characterization and Application of a Nanostructured Composite: Octakis(Cyanopropyldimethylsiloxy)Octasilsesquioxane. Appl Surf Sci 253:3683–3689. https://doi.org/10.1016/j.apsusc.2006.07.080

    Article  CAS  Google Scholar 

  70. do Carmo DR, Guinesi LS, Dias Filho NL, Stradiotto NR (2004) Thermolysis of Octa (hydridodimethylsiloxyl)Octasilsesquioxane in Pyridine Media and Subsequente Toluidine Blue O Adsorption. Appl Surf Sci 235:449–459. https://doi.org/10.1016/j.apsusc.2004.02.061

    Article  CAS  Google Scholar 

  71. Yang H, Lu B, Guo L, Qi B (2011) Cerium Hexacyanoferrate/Ordered Mesoporous Carbon Electrode and its Application in Electrochemical Determination of Hydrous Hydrazine. J Electroanal Chem 650:171–175. https://doi.org/10.1016/j.jelechem.2010.10.018

    Article  CAS  Google Scholar 

  72. de Oliveira DR, Fernandes DS, do Carmo DR (2020) A Cerium Hexacyanoferrate (III) Nanoparticle‐Modified Carbon Paste Electrode: Voltammetric Characterization and Behavior in the Presence of Dopamine. https://doi.org/10.1002/elan.201900441

  73. Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012) Dopamine Oxidation and Autophagy. Parkinsons Dis 2012:920953. https://doi.org/10.1155/2012/920953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. do Carmo DR, Fernandes DS (2017) Hybrid Graphene Oxide/Dab-Am-16 Dendrimer: Preparation, Characterization Chemical Reactivity and their Electrocatalytic Detection of L-Dopamine. Solid State Sci 71:33–41. https://doi.org/10.1016/j.solidstatesciences.2017.07.005

    Article  CAS  Google Scholar 

  75. Khun K, Ibupoto ZH, Liu X, Mansor NA, Turner AP, Beni V, Willander M (2014) An Electrochemical Dopamine Sensor Based on the ZnO/CuO Nanohybrid Structure. J Nanosci Nanotechno 14:6646–6652. https://doi.org/10.1166/jnn.2014.9367

    Article  CAS  Google Scholar 

  76. Thiagarajan S, Chen SM (2007) Preparation and Characterization of Ptau Hybrid Film Modified Electrode and their Use in Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. Talanta 74:212–222. https://doi.org/10.1016/j.talanta.2007.05.049

    Article  CAS  PubMed  Google Scholar 

  77. de Melo HC, Seleghim APD, Polito WL, Fatibello-Filho O, Vieira IC (2007) Simultaneous Diferencial Pulse Voltammetric Determination of L-Dopa snd Carbidopa in Pharmaceuticals Using a Carbon Paste Electrode Modified with Lead Dioxide Immobilized in a Polyester Resin. J Braz Chem Soc 18:797–803. https://doi.org/10.1590/S0103-50532007000400019

    Article  Google Scholar 

  78. Kamyabi MA, Aghajanloo F (2009) Electrocatalytic Response of Dopamine at a Carbon Paste Electrode Modified with Ferrocene. Croat Chem Acta 82: 599–606. https://hrcak.srce.hr/45439

  79. Castro SSL, Mortimer RJ, de Oliveira MF, Stradiotto NR (2008) Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode. Sensors 8:1950–1959. https://doi.org/10.3390/s8031950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang C, Sun X, Zhang C, Liu M (2020) Green Synthesis of Co-Ni Hollow Spheres for its Electrochemical Detection of Dopamine. J Nanopart Res 22:55. https://doi.org/10.1007/s11051-020-4775-z

    Article  CAS  Google Scholar 

  81. Fernandes DS, Maraldi VA, Dias Filho NL, do Carmo DR (2019) Reactivity of a Silsesquioxane Organofunctionalized with 4-Amino-5-Phenyl-4H-[1,2,4]-Triazole-3-Thiol: Complementary characterization and na Application to Chronoamperometric Detection of L-Dopamine. Silicon 11:1131–1142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The student Fernanda S. Franco would like to express her gratitude to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the granted scholarship.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Process 2018/24576–2).

Author information

Authors and Affiliations

Authors

Contributions

Fernanda dos Santos Franco: designed and performed the electrochemical experiments and verified the analytical methods; Murilo Santos Peixoto and Alexsandro dos Santos Felipe: performed some experiments. Devaney Ribeiro do Carmo: conceived the presented idea, performed some spectroscopic experiments and wrote the manuscript in consultation with the other authors. All authors participated in the discussion of the study results, contributing to the final manuscript.

Corresponding author

Correspondence to Devaney Ribeiro do Carmo.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Franco, F., Peixoto, M.S., dos Santos Felipe, A. et al. A Polyhedral Oligomeric Silsesquioxane (POSS) Doped with Cerium(III) / Fe(II) and its Application as an Electrochemical Sensor for L-dopamine. Silicon 14, 9543–9554 (2022). https://doi.org/10.1007/s12633-022-01659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01659-x

Keywords

Navigation