Skip to main content
Log in

Negative Capacitance Ferroelectric FET Based on Short Channel Effect for Low Power Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The electrical properties of ferroelectric (Fe) FETs with Negative Capacitance (NC) have been explored theoretically at temperatures ranging from -280 to +360 degrees Celsius. Temperature influences ferroelectric thin film surface potential amplification with a fixed thickness, according to the findings. As the temperature of the ferroelectric NC effect rises, the device's transfer and output qualities deteriorate. The findings of this work could be used in the future to help improve FeFET design and performance for applications that require low power dissipation. The NC effect in symmetric long channel double-gate Junctionless transistors with two gates is predicted using an analytical model based on the charge principle. We explored the effect of ferroelectric thickness on I-V characteristics to better understand ferroelectric materials. In our model, positive capacitance lowers short channel effects while enhancing current overdrive, resulting in lower power consumption and more efficient transistor size scaling. Based on our calculations for a long channel Junctionless with NC, the device's ON current will be six times higher than that of a Junctionless FET. We use oxygen ion mobility to explain sub-60 mV/dec results in thin-film Ta2O5/ZnO transistors with dynamic gate bias sweep. The oxygen ions in Ta2O5 direct the model in dynamic gate bias sweep, resulting in NC. When achieving a sub 60 mV/decade subthreshold slope, the study finishes by revealing design tradeoffs that give an engineer or physicist insight into the current status of ferroelectric nanowires and ferroelectric FETs' uses and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No supplementary materials

References

  1. Gupta M, Hu VP-H (2020) Negative capacitance junctionless device with mid-gap work function for low power applications. IEEE Electron Device Letters 41(3):473–476

    Article  CAS  Google Scholar 

  2. Rassekh A, Fathipour M (2020) A single-gate SOI nanosheet junctionless transistor at 10-nm gate length: design guidelines and comparison with the conventional SOI FinFET. J Comput Electron 19(2):631–639

    Article  CAS  Google Scholar 

  3. Vakkalakula BS, Vadthiya N (2021) p-Type Trigate Junctionless Nanosheet MOSFET: Analog/RF, Linearity, and Circuit analysis. ECS J. Solid State Sci. Technol. 10:123001. https://doi.org/10.1149/2162-8777/ac3bdf

    Article  CAS  Google Scholar 

  4. Sreenivasulu VB, Narendar V (2021) Junctionless Gate-all-around Nanowire FET with Asymmetric Spacer for Continued Scaling. Silicon. https://doi.org/10.1007/s12633-021-01471-z

  5. Bharath Sreenivasulu V (2021) Vadthiya Narendar, Characterization and optimization of junctionless gate-all-around vertically stacked nanowire FETs for sub-5 nm technology nodes. Microelectronics Journal 105214. https://doi.org/10.1016/j.mejo.2021.105214

  6. Chau R (2019) Process and packaging innovations for moore’s law continuation and beyond,” in 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, pp. 1–1

  7. Saeidi A, Jazaeri F, Stolichnov I, Enz CC, Ionescu AM (2019) Negative capacitance as universal digital and analog performance booster for complementary mos transistors. Scientific reports 9(1):1–9

    Article  CAS  Google Scholar 

  8. Hoffmann M, Fengler FP, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Lucian P, Slesazeck S, Mikolajick T (2019) Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565(7740):464

    Article  CAS  PubMed  Google Scholar 

  9. Rassekh A, Jazaeri F, Fathipour M, Sallese J-M (2019) Modeling interface charge traps in junctionless fets, including temperature effects. IEEE Transactions on Electron Devices 66(11):4653–4659

    Article  CAS  Google Scholar 

  10. Choi Y, Hong Y, Shin C (2019) Device design guideline for junctionless gate-all-around nanowire negative-capacitance fet with hfo2-based ferroelectric gate stack. Semiconductor Science and Technology 35(1):015011

    Article  Google Scholar 

  11. Balakrishna Pillai P, De Souza MM (Jan. 2017) Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. ACS Appl. Mater. Interfaces 9(2):1609–1618. https://doi.org/10.1021/ACSAMI.6B13746

    Article  CAS  PubMed  Google Scholar 

  12. A. Kumar, P. Balakrishna Pillai, X. Song, and M. M. De Souza, “Negative Capacitance beyond Ferroelectric Switches,” ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 19812–19819, Jun. 2018. DOI: https://doi.org/10.1021/ACSAMI.8B05093.

  13. Kim G, Lee J, Kim JH, Kim S (2019) High on-current Ge-channel heterojunction tunnel field-effect transistor using direct band-to-band tunneling. Micromachines 10(2):77

    Article  PubMed Central  Google Scholar 

  14. Zhou J, Han G, Xu N, Li J, Peng Y, Liu Y, Zhang J, Sun QQ, Zhang DW, Hao Y (2018) Incomplete dipoles flipping produced near hysteresis-free negative capacitance transistors. IEEE Electron Device Lett 40(2):329–332

  15. Lin YK, Agarwal H, Kushwaha P, Kao MY, Liao YH, Chatterjee K, Salahuddin S, Hu C (2019) Analysis and modeling of inner fringing field effect on negative capacitance FinFETs. IEEE Trans Electron Devices 66(4):2023–2027

  16. Salahuddin S, Hu C (2019) Analysis and Modeling of Inner Fringing Field Effect on Negative Capacitance FinFETs. IEEE Transactions on Electron Devices. 66(4):2023–2027

    Article  Google Scholar 

  17. Liao Y-H, Kwon D, Lin Y-K, Tan AJ, Hu C, Salahuddin S (2019) Anomalously Beneficial Gate-Length Scaling Trend of Negative Capacitance Transistors. IEEE Electron Device Letters. 40(11):1860–1863

    Article  CAS  Google Scholar 

  18. Prakash MD, Nelam BG, Ahmadsaidulu S, Navaneetha A, Panigrahy AK (2021) Performance Analysis of Ion-Sensitive Field Effect Transistor with Various Oxide Materials for Biomedical Applications. Silicon. https://doi.org/10.1007/s12633-021-01413-9

  19. Prakash MD, Krsihna BV, Satyanarayana BVV, Vignesh NA, Panigrahy AK, Ahmadsaidulu S (2021) A Study of an Ultrasensitive Label Free Silicon Nanowire FET Biosensor for Cardiac Troponin I Detection. Silicon. https://doi.org/10.1007/s12633-021-01352-5

  20. Meriga C, Ponnuri RT, Satyanarayana BVV, Gudivada AAK, Panigrahy AK, M. D. (2021) Prakash A Novel Teeth Junction Less Gate All Around FET for Improving Electrical Characteristics. Silicon. https://doi.org/10.1007/s12633-021-00983-y

  21. Lin Y-C, McGuire F, Noyce S, Williams N, Cheng Z, Andrews J, Franklin AD (2019) Effects of gate stack composition and thickness in 2D negative capacitance FETs. IEEE J. Electron Devices Society 7:645–649

    Article  CAS  Google Scholar 

  22. Cheng Z, Yu Y, Singh S, Price K, Noyce SG, Lin Y-C, Cao L, Franklin AD (2019) Immunity to scaling in MoS2 transistors using edge contacts. Nano Lett. 19(8):5077–5085

    Article  CAS  PubMed  Google Scholar 

  23. Cheng Z, Abuzaid H, Yu Y, Zhang F, Li Y, Noyce S, Williams N, Lin Y-C, Doherty J, Tao C, Cao L, Franklin AD (2019) Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Mater 6:034005

    Article  CAS  Google Scholar 

  24. Kwon D, Cheema S, Shanker N, Chatterjee K, Liao Y-H, Tan AJ, Hu C, Salahuddin S (2019) Negative Capacitance FET With 1.8-nm-Thick Zr-Doped HfO2 Oxide. IEEE Electron Device Letters 40(6):993–996

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad for their cooperation and support during this research work.

Author information

Authors and Affiliations

Authors

Contributions

N Arun Vignesh and S Kanithan: Conceptualization; N Arun Vignesh and S Jana: investigation; N Arun, Vignesh, S Kanithan, S Jana, C Gokul Prasad, E Konguvel, S. Vimalnath : resources; N Arun Vignesh ,C Gokul Prasad, E Konguvel and S. Vimalnath : data curation; N. Arun Vignesh, S Kanithan and S. Vimalnath : writing—original draft preparation; N. Arun Vignesh, S Jana,C Gokul Prasad and E Konguvel: writing—review and editing; N. Arun Vignesh, S Kanithan and S. Vimalnath: visualization; N. Arun Vignesh: supervision.

Corresponding authors

Correspondence to S. Kanithan or N. Arun Vignesh.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Consent to Participate

Yes

Consent for Publication

Author(s): N Arun Vignesh

Author's signature:

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanithan, S., Vignesh, N.A., Jana, S. et al. Negative Capacitance Ferroelectric FET Based on Short Channel Effect for Low Power Applications. Silicon 14, 9569–9579 (2022). https://doi.org/10.1007/s12633-021-01625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01625-z

Keywords

Navigation