Skip to main content

Advertisement

Log in

Influence of Thermal Activation and Silica Modulus on the Properties of Clayey-Lateritic Based Geopolymer Binders Cured at Room Temperature

  • Review Article
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, a laterite soil which is a locally available material in many parts of the world was used as the aluminosilicate precursor. The main objective of this study is to investigate the effect of calcination temperature on physicochemical properties of the resulting geopolymers synthesized from calcined laterite soils. In order to produce the geopolymer binders, the laterite soil was activated thermally through calcination (from 550 to 750 °C) and the resulting calcined laterite was activated with an alkali activator composed of 8 and 10 M of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) in mass of 0.5. Then, the calcined laterite soils and synthesized geopolymer products were analyzed using X-ray diffraction (XRD), Brunner-Emmet-Teller (BET), Fourier Transform Infra-Red (FTIR), X-Ray Fluorescence (XRF), thermogravimetry (TG), scanning electron microscopy (SEM/EDX), and differential scanning calorimetry (DSC). The results from this study indicate that increasing the calcination temperature from 550 to 750 °C resulted in the transformation of phases and an increase in the reactivity of the laterites, resulting in material with improved properties. The use of laterite calcined at 750 °C and activated with 8 M NaOH solution resulted to an increase in the 28 days compressive strength by 35.3 MPa when compared to laterite calcined at 550 °C. Increasing the concentration of the NaOH solution was also found to yield higher material performance. Microstructural investigations showed a heterogeneous compact and dense structure resulting from high polycondensation much pronounced with the rise of calcination temperature from 550 to 750 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billong N, Melo UC, Louvet F, Njopwouo D (2009) Properties of compressed lateritic soil stabilized with a burnt clay – lime binder : effect of mixture components. Constr Build Mater 23:2457–2460. https://doi.org/10.1016/j.conbuildmat.2008.09.017

    Article  Google Scholar 

  2. Kaze RC, Beleuk MLM, Cannio M, Rosa R, Kamseu E, Chinje MU, Leonelli C (2018) Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites. J Clean Prod 3. https://doi.org/10.1016/j.jclepro.2018.07.171

  3. Lemougna PN, Mackenzie KJD, Melo UFC (2011) Synthesis and thermal properties of inorganic polymers ( geopolymers ) for structural and refractory applications from volcanic ash. Ceram Int 37:3011–3018. https://doi.org/10.1016/j.ceramint.2011.05.002

    Article  CAS  Google Scholar 

  4. Jaritngam S, Somchainuek O, Taneerananon P (2012) An investigation of lateritic Soil Cement for Sustainable Pavements. Indian J Sci Technol:3–6

  5. Jaritngam S, Somchainuek O, Taneerananon P (2014) Feasibility of laterite-cement mixture as pavement base course aggregate. Iran J Sci Technol Trans Civil Eng 38:275–284

    Google Scholar 

  6. Obonyo EA, Kamseu E, Lemougna PN, Tchamba AB, Melo UC, Leonelli C (2014) A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials. Sustainability:5535–5553. https://doi.org/10.3390/su6095535

  7. Kaze RC, Beleuk LM, Djouka MLF, Nana A, Kamseu E, Melo UFC, Leonelli C (2017) The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Appl Clay Sci 138:48–62. https://doi.org/10.1016/j.clay.2016.12.040

    Article  CAS  Google Scholar 

  8. J. Davidovits, Application of Ca-based geopolymer with blast furnace slag, a review, (n.d.)

  9. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res:1–29. https://doi.org/10.1146/annurev-matsci-070813-113515

  10. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  11. Zivica V, Palou MT, ĽBágeľ TI (2014) High strength metahalloysite based geopolymer. Compos B Eng 57:155–165. https://doi.org/10.1016/j.compositesb.2013.09.034

    Article  CAS  Google Scholar 

  12. Adak D, Sarkar M, Mandal S (2014) Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr Build Mater 70:453–459. https://doi.org/10.1016/j.conbuildmat.2014.07.093

    Article  Google Scholar 

  13. Elimbi A, Tchakoute HK, Kondoh M, Manga JD (2014) Thermal behavior and characteristics of fi red geopolymers produced from local Cameroonian metakaolin. Ceram Int 40:4515–4520. https://doi.org/10.1016/j.ceramint.2013.08.126

    Article  CAS  Google Scholar 

  14. Zhang M, Zhao M, Zhang G, Sietins JM, Granados-focil S (2018) Reaction kinetics of red mud-fly ash based geopolymers : Effects of curing temperature on chemical bonding , porosity , and mechanical strength Reaction kinetics of red mud- fl y ash based geopolymers: E ff ects of curing temperature on chemical bonding. Cem Concr Compos 93:175–185. https://doi.org/10.1016/j.cemconcomp.2018.07.008

    Article  CAS  Google Scholar 

  15. Moon H, Ramanathan S, Suraneni P, Shon C (n.d.) Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison to Other Supplementary Cementitious Materials. Materials. https://doi.org/10.3390/ma11101847

  16. Şahin O, İlcan H, Ateşli AT, Kul A, Yıldırım G, Şahmaran M (2021) Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cem Concr Compos 121. https://doi.org/10.1016/j.cemconcomp.2021.104088

  17. Akduman Ş, Kocaer O, Aldemir A, Şahmaran M, Yıldırım G, Almahmood H, Ashour A (2021) Experimental investigations on the structural behaviour of reinforced geopolymer beams produced from recycled construction materials. J Build Eng 41. https://doi.org/10.1016/j.jobe.2021.102776

  18. Ulugöl H, Kul A, Yıldırım G, Şahmaran M, Aldemir A, Figueira D, Ashour A (2021) Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. J Clean Prod 280:124358. https://doi.org/10.1016/j.jclepro.2020.124358

    Article  CAS  Google Scholar 

  19. Yıldırım G, Kul A, Özçelikci E, Şahmaran M, Aldemir A, Figueira D, Ashour A (2021) Development of alkali-activated binders from recycled mixed masonry-originated waste. J Build Eng 33. https://doi.org/10.1016/j.jobe.2020.101690

  20. Mimboe AG, Abo MT, Djobo JNY, Tome S, Kaze RC, Deutou JGN (2020) Lateritic soil based-compressed earth bricks stabilized with phosphate binder. J Build Eng 31. https://doi.org/10.1016/j.jobe.2020.101465

  21. Sontia Metekong JV, Kaze CR, Deutou JG, Venyite P, Nana A, Kamseu E, Melo UC, Tatietse TT (2020) Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: mechanical properties and durability. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101935

  22. Lemougna PN, Madi AB, Kamseu E, Melo UC, Delplancke MP, Rahier H (2014) Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications. Constr Build Mater 65:60–66. https://doi.org/10.1016/j.conbuildmat.2014.04.100

    Article  Google Scholar 

  23. Lassinantti M, Romagnoli M, Pollastri S, Gualtieri AF (2015) Cement and concrete research inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution : mechanical and microstructural properties. Cem Concr Res 67:259–270. https://doi.org/10.1016/j.cemconres.2014.08.010

    Article  CAS  Google Scholar 

  24. Tchakouté HK, Melele SJK, Djamen AT, Kaze CR, Kamseu E, Nanseu CNP, Leonelli C, Rüscher CH (2020) Microstructural and mechanical properties of poly (sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: A comparative study. Appl Clay Sci 186. https://doi.org/10.1016/j.clay.2020.105448

  25. Kaze CR, Lecomte-Nana GL, Kamseu E, Camacho PS, Yorkshire AS, Provis JL, Duttine M, Wattiaux A, Melo UC (2021) Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: A comparative study. Cem Concr Res 140. https://doi.org/10.1016/j.cemconres.2020.106320

  26. Kaze RC, Djobo JNY, Nana A, Kouamo H, Kamseu E, Chinje Melo U, Leonelli C, Rahier H (2018) Effect of silicate modulus on the setting , mechanical strength and microstructure of iron-rich aluminosilicate ( laterite ) based-geopolymer cured at room temperature. Ceram Int 44:21442–21450. https://doi.org/10.1016/j.ceramint.2018.08.205

    Article  CAS  Google Scholar 

  27. Rodrigue Kaze C, Ninla Lemougna P, Alomayri T, Assaedi H, Adesina A, Kumar Das S, Lecomte-Nana GL, Kamseu E, Chinje Melo U, Leonelli C (2020) Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. Constr Build Mater:121443. https://doi.org/10.1016/j.conbuildmat.2020.121443

  28. B. Standards, BS EN 196-1: methods of testing cement — determination of strength, (2005)

    Google Scholar 

  29. ASTM (1999) ASTM C373-14 Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Astm C373-88

  30. A. (2013) C642, ASTM C642-13 standard test method for density, absorption, and voids in hardened concrete. Annu B ASTM Stand:1–3. https://doi.org/10.1520/C0642-13.5

  31. Lecomte-Nana G, Goure-Doubi H, Smith A, Wattiaux A, Lecomte G (2012) Effect of iron phase on the strengthening of lateritic-based “geomimetic” materials. Appl Clay Sci 70:14–21. https://doi.org/10.1016/j.clay.2012.09.014

    Article  CAS  Google Scholar 

  32. Nana A, Ngouné J, Kaze RC, Boubakar L, Tchounang SK, Tchakouté HK, Kamseu E, Leonelli C (2019) Room-temperature alkaline activation of feldspathic solid solutions : development of high strength geopolymers. Constr Build Mater 195:258–268. https://doi.org/10.1016/j.conbuildmat.2018.11.068

    Article  CAS  Google Scholar 

  33. Kamseu E, Cannio M, Obonyo EA, Tobias F, Chiara M, Sglavo VM, Leonelli C (2014) Cement & Concrete Composites Metakaolin-based inorganic polymer composite : Effects of fine aggregate composition and structure on porosity evolution , microstructure and mechanical properties. Cem Concr Compos 53:258–269. https://doi.org/10.1016/j.cemconcomp.2014.07.008

    Article  CAS  Google Scholar 

  34. Nana A, Alomayri TS, Venyite P, Kaze RC, Assaedi HS, Nobouassia CB, Sontia JVM, Ngouné J, Kamseu E, Leonelli C (2020) Mechanical properties and microstructure of a Metakaolin-based inorganic polymer mortar reinforced with quartz sand. Silicon. https://doi.org/10.1007/s12633-020-00816-4

  35. Nemaleu JGD, Bakaine Djaoyang V, Bilkissou A, Kaze CR, Boum RBE, Djobo JNY, Lemougna Ninla P, Kamseu E (2020) Investigation of groundnut Shell powder on development of lightweight Metakaolin based Geopolymer composite: mechanical and microstructural properties. Silicon. https://doi.org/10.1007/s12633-020-00829-z

  36. Mustakim SM, Das SK, Mishra J, Aftab A, Alomayri TS, Assaedi HS, Kaze CR (2020) Improvement in fresh, mechanical and microstructural properties of Fly ash- blast furnace slag based Geopolymer concrete by addition of Nano and Micro silica. Silicon. https://doi.org/10.1007/s12633-020-00593-0

  37. Youmoue M, Tene Fongang RT, Gharzouni A, Kaze RC, Kamseu E, Sglavo VM, Tonle Kenfack I, Nait-Ali B, Rossignol S (2020) Effect of silica and lignocellulosic additives on the formation and the distribution of meso and macropores in foam metakaolin-based geopolymer filters for dyes and wastewater filtration, SN. Appl Sci 2. https://doi.org/10.1007/s42452-020-2388-x

  38. Boum RBE, Kaze CR, Nemaleu JGD, Djaoyang VB, Rachel NY, Ninla PL, Owono FM, Kamseu E (2020) Thermal behaviour of metakaolin–bauxite blends geopolymer: microstructure and mechanical properties. SN Appl Sci 2. https://doi.org/10.1007/s42452-020-3138-9

  39. Deutou JNG, Zounedou N, Kaze RC, Mohamed H, Beda T, Melo UC, Kamseu E, Sglavo VM (2020) Semi-vitrified porous kyanite mullite ceramics: young modulus, microstructure and pore size evolution. SN Appl Sci. https://doi.org/10.1007/s42452-019-1902-5

  40. Kaze CR, Alomayri T, Hasan A, Tome S, Lecomte-Nana GL, Nemaleu JGD, Tchakoute HK, Kamseu E, Melo UC, Rahier H (2020) Reaction kinetics and rheological behaviour of meta-halloysite based geopolymer cured at room temperature: effect of thermal activation on physicochemical and microstructural properties. Appl Clay Sci 196:105773. https://doi.org/10.1016/j.clay.2020.105773

    Article  CAS  Google Scholar 

  41. Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016) Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J Mater Sci 51:10301–10317. https://doi.org/10.1007/s10853-016-0257-1

    Article  CAS  Google Scholar 

  42. Wang MR, Jia DC, He PG, Zhou Y (2010) Influence of calcination temperature of kaolin on the structure and properties of final geopolymer. Mater Lett. https://doi.org/10.1016/j.matlet.2010.08.007

  43. Hamidi RM, Man Z, Azizli KA (2016) Concentration of NaOH and the effect on the properties of Fly ash based Geopolymer. Procedia Eng 148:189–193. https://doi.org/10.1016/j.proeng.2016.06.568

    Article  CAS  Google Scholar 

  44. ASTM (2018) C150/150M-18, Standard Specification for Portland Cement

  45. Bewa CN, Tchakouté HK, Rüscher CH, Kamseu E, Leonelli C (2019) Influence of the curing temperature on the properties of poly (phospho-ferro-siloxo) networks from laterite. SN Appl Sci 1. https://doi.org/10.1007/s42452-019-0975-5

  46. Tippayasam C, Balyore P, Thavorniti P, Kamseu E, Leonelli C, Chindaprasirt P, Chaysuwan D (2016) Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Constr Build Mater 104:293–297. https://doi.org/10.1016/j.conbuildmat.2015.11.027

    Article  CAS  Google Scholar 

  47. Fabbri B, Gualtieri S, Leonardi C (2013) Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl Clay Sci. https://doi.org/10.1016/j.clay.2012.09.019

  48. Moon J, Bae S, Celik K, Yoon S, Kim KH, Kim KS, Monteiro PJM (2014) Characterization of natural pozzolan-based geopolymeric binders. Cem Concr Compos 53:97–104. https://doi.org/10.1016/j.cemconcomp.2014.06.010

    Article  CAS  Google Scholar 

  49. Billong N, Kinuthia J, Oti J, Melo UC (2018) Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice husk ash (RHA): effect on tensile strength and microstructure. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.09.001

  50. Hanjitsuwan S, Hunpratub S, Thongbai P, Maensiri S, Sata V, Chindaprasirt P (2014) Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2013.09.012

  51. Elimbi A, Tchakoute HK, Njopwouo D (2011) Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr Build Mater 25:2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055

    Article  Google Scholar 

  52. Davidovits J (2020) Geopolymer chemistry and applications5th edn

    Google Scholar 

Download references

Acknowledgments

This project received the contribution of the FLAIR fellowship African Academic of Science and the Royal Society through the funding N° FLR/R1/201402. The authors are also grateful to Ingessil S.r.l., Verona, Italy, for providing the sodium silicate used.

Availability of Data and Materials

All data generated or analyzed during this study are included in this article.

Author information

Authors and Affiliations

Authors

Contributions

Jordan Valdès Sontia Metekong: Conceptualization, Methodology, Investigation Writing - original draft & Project administration. Rodrigue Cyriaque Kaze: Validation, Visualization, Methodology, Writing - review & editing. Adeyemi Adesina: Validation, Writing - review & editing. Juvenal Giogetti Deutou Nemaleu: Methodology, Writing-review & editing. Jean Noel Yankwa Djobo: Writing – review & editing. Patrick Ninla Lemougna: Writing – review & editing. Thamer Alomayri: Writing – review & editing. Elie Kamseu: Conceptualization, Supervision & Resources. Uphie Chinje Melo: Conceptualization & Supervision. Thomas Tamo Tatietse: Conceptualization & Supervision.

Corresponding authors

Correspondence to Jordan Valdès Sontia Metekong or Cyriaque Rodrigue Kaze.

Ethics declarations

This manuscript has been published elsewhere in any form or language and has not been submitted to more than one journal for simultaneous consideration.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metekong, J.V.S., Kaze, C.R., Adesina, A. et al. Influence of Thermal Activation and Silica Modulus on the Properties of Clayey-Lateritic Based Geopolymer Binders Cured at Room Temperature. Silicon 14, 7399–7416 (2022). https://doi.org/10.1007/s12633-021-01566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01566-7

Keywords

Navigation