Skip to main content
Log in

Effects of Epithermal Neutron Irradiation on the Characteristics of the Porous Silicon

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Porous silicon (PSi) samples were irradiated in the epithermal neutron spectrum for 17 h and drastic changes were observed in its electrical, optical and morphological characteristics. The FE-SEM analysis showed that the mean pore size increases with irradiation, which could be due to the formation of atomic displacements in the silicon (Si) lattice. The electrical properties changed significantly after irradiation and showed an enhancement in the conductivity of PSi due to the 31P levels which were formed via Neutron Transmutation Doping (NTD). Simultaneously, it has been observed that the surface composition as well as the transmittance of the porous Si wafer was modified as there were enough number of unbounded Si atoms as well as the 31P levels in the lattice structure. Hence it is recommended that the detailed understanding of damage events as well as a vast knowledge on the neutron induced displacements in Si would open wide possibilities as a potential material in nuclear and materials technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings are available from the corresponding author upon reasonable request.

References

  1. Torres-Costa V, Martín-Palma RJ (2010) Application of nanostructured porous silicon in the field of optics. A review. J Mater Sci 45(11):2823–2838. https://doi.org/10.1007/s10853-010-4251-8

    Article  CAS  Google Scholar 

  2. Kumar P (2020) Functionalized nano-porous silicon surfaces for energy storage application. Nanotechnology for Energy and Environmental Engineering 377

  3. Oakes L et al (2013) Surface engineered porous silicon for stable, high performance electrochemical supercapacitors. Sci Rep 3:1–7. https://doi.org/10.1038/srep03020

    Article  Google Scholar 

  4. Ismail RA, Alwan AM, Ahmed AS (2017) Preparation and characteristics study of nano-porous silicon UV photodetector. Appl Nanosci 7:1–2. https://doi.org/10.1007/s13204-016-0544-9

    Article  CAS  Google Scholar 

  5. Li YY et al (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science (80-) 299(5615):2045–2047. https://doi.org/10.1126/science.1081298

    Article  CAS  Google Scholar 

  6. Huseynov EM (2020) Thermal stability and heat flux investigation of neutron-irradiated nanocrystalline silicon carbide (3 C–SiC) using DSC spectroscopy. Ceram Int 46(5):5645–5648. https://doi.org/10.1016/j.ceramint.2019.11.010

    Article  CAS  Google Scholar 

  7. Huseynov EM (2018) Dielectric loss of neutron-irradiated nanocrystalline silicon carbide (3 C-SiC) as a function of frequency and temperature. Solid State Sci 84:44–50. https://doi.org/10.1016/j.solidstatesciences.2018.08.006

    Article  CAS  Google Scholar 

  8. Huseynov E, Garibov A, Mehdiyeva R, Huseynova E (2016) Effects of neutron flux on the nano silica particles: ESR study. Mod Phys Lett B 30(8):1–8. https://doi.org/10.1142/S0217984916501153

    Article  CAS  Google Scholar 

  9. Huseynov E, Jazbec A (2019) EPR spectroscopic studies of neutron-irradiated nanocrystalline silicon carbide (3 C-SiC). Silicon 11(4):1801–1807. https://doi.org/10.1007/s12633-018-9996-8

    Article  CAS  Google Scholar 

  10. Huseynov E, Garibov A (2017) Effects of neutron flux on the temperature dependency of permittivity of 3 C-SiC nanoparticles. Silicon 9(5):753–759. https://doi.org/10.1007/s12633-016-9486-9

    Article  CAS  Google Scholar 

  11. Mehdiyeva R, Huseynov E (2018) Effects of neutron irradiation on the current–voltage characteristics of SiO2 nanoparticles. Silicon 10(4):1369–1373. https://doi.org/10.1007/s12633-017-9613-2

    Article  CAS  Google Scholar 

  12. Nordlund K et al (2018) Primary radiation damage: A review of current understanding and models. J Nucl Mater 512:450–479. https://doi.org/10.1016/j.jnucmat.2018.10.027

    Article  CAS  Google Scholar 

  13. Saha U, Devan K, Ganesan S (2019) Application of arc-dpa model to estimate the primary radiation damage of structural materials by neutrons and the necessity of rescaling dpa versus final experimental damage correlations. J Nucl Mater 522:86–96. https://doi.org/10.1016/j.jnucmat.2019.05.018

    Article  CAS  Google Scholar 

  14. Huseynov EM, Naghiyev TG, Aliyeva US (2020) Thermal parameters investigation of neutron-irradiated nanocrystalline silicon carbide (3 C–SiC) using DTA, TGA and DTG methods. Phys B Condens Matter 577(September 2019):411788. https://doi.org/10.1016/j.physb.2019.411788.

  15. Abdul Amir HF, Chik A (2009) Neutron radiation effects on metal oxide semiconductor (MOS) devices. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267(18):3032–3036. https://doi.org/10.1016/j.nimb.2009.06.051

    Article  CAS  Google Scholar 

  16. Ali GG, Karomi IB, Sulaiman AA, Mohammed AM (2020) Properties of P-type porous silicon bombarded by neutrons. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 468(September 2019):23–27. https://doi.org/10.1016/j.nimb.2020.02.022.

  17. Ali GG, Uik. AuobSulaiman A, Younus MH, Mohammed AM (2019) Study of porous silicon behavior via neutron irradiation: Fabrication and characterization. Results Phys 14(June):102466. https://doi.org/10.1016/j.rinp.2019.102466

    Article  Google Scholar 

  18. Sohrabnezhad S, Ochbelgh DR, Golboos NM (2013) Irradiation with neutrons and formation of simple radiation defects in semiconductors. Int J Nanosci Nanotechnol 9(2):61–70

  19. Vaitkus JV, Mekys A, Rumbauskas V, Storasta J (2016) Neutron irradiation influence on mobility and compensation of dark conductivity in silicon. Lith J Phys 56(2):102–110. https://doi.org/10.3952/physics.v56i2.3306

    Article  Google Scholar 

  20. Sultan M, Elsherbiny E, Sobhy M (1995) A method for neutron transmutation doping of silicon in research reactors.  Ann Nucl Energy 22(5): 303–310. https://doi.org/10.1016/0306-4549(94)00063-K

  21. Lilly CS, Bindhu B, Midhun CV, Musthafa MM, Ganapathi RR (2019) The estimation of radiation induced damages on nano-structured nuclear radiation detectors. AIP Conf Proc 2100(April):1–5. https://doi.org/10.1063/1.5098642

  22. Li H et al (2004) Annealing behavior comparison of NTD FZ (H) Si irradiated in light-water-reactor and heavy-water-reactor. Mater Sci Eng B Solid-State Mater Adv Technol 107(2):119–123. https://doi.org/10.1016/j.mseb.2003.10.076

    Article  CAS  Google Scholar 

  23. Kulikov DV, Kharlamov VS, Schmidt AA, Safonov KL, Korolev SA, Trushin YV (2005) Computer simulation of neutron transmutation doping of isotopically engineered heterostructures. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 228(1-4 SPEC. ISS):230–234. https://doi.org/10.1016/j.nimb.2004.10.049

  24. Han H, Huang Z, Lee W (2014) Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3):271–304. https://doi.org/10.1016/j.nantod.2014.04.013

    Article  CAS  Google Scholar 

  25. Xu J et al (2019) Preparation of porous silicon by electrochemical etching methods and its morphological and optical properties. Int J Electrochem Sci 14(6):5188–5199. https://doi.org/10.20964/2019.06.10

    Article  CAS  Google Scholar 

  26. Zhou H, Duan X (2011) Porous silicon nanowires. Nanoscale 3:4060–4068. https://doi.org/10.1039/c1nr10668f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajkumar K, Pandian R, Sankarakumar A, Rajendra Kumar RT (2017) Engineering silicon to porous silicon and silicon nanowires by metal-assisted chemical etching: role of Ag size and electron-scavenging rate on morphology control and mechanism. ACS Omega 2(8):4540–4547. https://doi.org/10.1021/acsomega.7b00584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner CD (2000) NIST X-ray photoelectron spectroscopy database. NIST Standarad Reference Database 20

  29. Zhao NQ, Jin Y, Du XW, Fu YS (2007) The effect of low-energy-ion irradiation on photoluminescence of porous silicon. J Appl Phys 101(2):2005–2008. https://doi.org/10.1063/1.2422795

    Article  CAS  Google Scholar 

  30. Franke R, Chassé T, Streubel P, Meisel A (1991) Auger parameters and relaxation energies of phosphorus in solid compounds. J Electron Spectros Relat Phenomena 56(4):381–388. https://doi.org/10.1016/0368-2048(91)85035-R

    Article  CAS  Google Scholar 

  31. Dunford CL (1992) Evaluated nuclear data file, ENDF/B-VI. In Nuclear data for science and technology. Springer, Berlin, Heidelberg, pp 788–792. https://doi.org/10.1007/978-3-642-58113-7_222

  32. Huseynov EM (2018) Neutron irradiation effects on the temperature dependencies of electrical conductivity of silicon carbide (3 C-SiC) nanoparticles. Silicon 10(3):995–1001. https://doi.org/10.1007/s12633-017-9559-4

    Article  CAS  Google Scholar 

  33. Brown DA et al (2018) ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets 148:1–142. https://doi.org/10.1016/j.nds.2018.02.001

    Article  CAS  Google Scholar 

  34. Kalendra V, Gaubas E, Kazukauskas V, Zasinas E, Vaitkus J (2010) Photoconductivity spectra and deep levels in the irradiated p+-n-n+ Si detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 612(3):555–558. https://doi.org/10.1016/j.nima.2009.08.043

    Article  CAS  Google Scholar 

  35. Ma PW, Dudarev SL, Woo CH (2012) Spin-lattice-electron dynamics simulations of magnetic materials. Phys Rev B - Condens Matter Mater Phys 85(18):30–37. https://doi.org/10.1103/PhysRevB.85.184301

    Article  CAS  Google Scholar 

  36. Dudarev SL, Derlet PM (2007) Interatomic potentials for materials with interacting electrons. J Comput Mater Des14(SUPPL. 1):129–140. https://doi.org/10.1007/s10820-007-9073-x.

  37. Cyriac SL, Bindhu B, Midhun CV, Musthafa MM (2021) Emerging trends in nano structured silicon detectors for neutron spectroscopy. Silicon. https://doi.org/10.1007/s12633-021-00961-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Nazimudeen EA, Department of Physics, Christian College, Kerala, India for the FE-SEM and XPS measurements on the pristine as well as the irradiated PSi samples.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding authors

Correspondence to Swapna Lilly Cyriac or B. Bindhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyriac, S.L., Bindhu, B., Midhun, C.V. et al. Effects of Epithermal Neutron Irradiation on the Characteristics of the Porous Silicon. Silicon 14, 7879–7887 (2022). https://doi.org/10.1007/s12633-021-01550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01550-1

Keywords

Navigation