Skip to main content
Log in

Photoresponsivity, Electrical and Dielectric Properties of GaAs/P-Si Heterojunction-Based Photodiode

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The current work discusses the structural, electrical, and dielectric properties of Au/n-GaAs/p-Si/Al heterojunction diode which was prepared by liquid phase epitaxy (LPE). Scientists focused in their study on the differences in the crystal lattice constant between silicon and gallium arsenide, as well as the structural defects of the prepared films, trying to overcome the limitation of the crystal lattice mismatch between the two materials using an interfacial layer or buffer layer. We focused in our study on the aspects that researchers did not address such as the dielectric and electrical properties of gallium arsenide which was deposited directly on silicon despite the difference in the crystal lattice. By capacitance-voltage investigation, a comprehensive study of the dielectric constant (Ɛ’), dielectric loss (Ɛ”) where the real part represents the ability of the material to store the electric energy, while the imaginary part represents the dissipation of energy through the material. The Cole-Cole diagram has been presented in addition to their relationships to voltage, current, temperature. The electrical parameters such as ideality factor (n), barrier height (ϕb), series resistance (Rs) were determined from the conventional and Cheung’s methods. The photo-transient characteristics performed under the illumination of 30 mW/cm2 have shown rapid response to light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Van Campenhout J, Merckling C, Van Thourhout D (2015) Room temperature InP DFB laser Array directly grown on (001) silicon. Nat Photonics 9:837–842. https://doi.org/10.1038/nphoton.2015.199

    Article  CAS  Google Scholar 

  2. Jain N, Hudait MK (2014) III–V multijunction solar cell integration with silicon: present status, challenges and future outlook. Energy Harvest Syst 1. https://doi.org/10.1515/ehs-2014-0012

  3. Justice J, Bower C, Meitl M, Mooney MB, Gubbins MA, Corbett B (2012) Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers. Nat Photonics 6:610–614. https://doi.org/10.1038/nphoton.2012.204

    Article  CAS  Google Scholar 

  4. Paladugu M, Merckling C, Loo R, Richard O, Bender H, Dekoster J, Vandervorst W, Caymax M, Heyns M (2012) Site selective integration of III-V materials on Si for nanoscale logic and photonic devices. Cryst Growth Des 12:4696–4702. https://doi.org/10.1021/cg300779v

    Article  CAS  Google Scholar 

  5. Wan Y, Zhang Z, Chao R, Norman J, Jung D, Shang C, Li Q, Kennedy MJ, Liang D, Zhang C, Shi J-W, Gossard AC, Lau KM, Bowers JE (2017) Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt Express 25:27715–27723. https://doi.org/10.1364/OE.25.027715

    Article  CAS  PubMed  Google Scholar 

  6. Ashery A, Gad S, Shaban H, Gaballah AEH (2021) Heterostructure device based on graphene oxide/TiO2/n-Si for optoelectronic applications. ECS J Solid State Sci Technol. https://doi.org/10.1149/2162-8777/abe1d9

  7. Ashery A, Elnasharty MMM, Farag AAM, Salem MA, Nasralla N (2017) Electrical performance and photosensitive properties of cu/SiO2/Si –MOS based junction prepared by liquid phase epitaxy. Superlattice Microst 109:662–674. https://doi.org/10.1016/j.spmi.2017.05.056

    Article  CAS  Google Scholar 

  8. Wu J, Chen S, Seeds A, Liu H (2015) Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D Appl Phys 48:363001. https://doi.org/10.1088/0022-3727/48/36/363001

    Article  CAS  Google Scholar 

  9. Huang J, Guo D, Deng Z, Chen W, Liu H, Wu J, Chen B (2018) Midwave infrared quantum dot quantum cascade photodetector monolithically grown on silicon substrate. J Lightwave Technol 36:4033–4038 http://jlt.osa.org/abstract.cfm?URI=jlt-36-18-4033

    Article  CAS  Google Scholar 

  10. Chen W, Deng Z, Guo D, Chen Y, Mazur YI, Maidaniuk Y, Benamara M, Salamo GJ, Liu H, Wu J, Chen B (2018) Demonstration of InAs/InGaAs/GaAs quantum dots-in-a-well mid-wave infrared photodetectors grown on silicon substrate. J Lightwave Technol 36:2572–2581 http://jlt.osa.org/abstract.cfm?URI=jlt-36-13-2572

    Article  CAS  Google Scholar 

  11. D’Souza S, Haysom J, Anis H, Hinzer K (2011) The down-to-earth future of Si substrate multi-junction concentrator photovoltaics. In: 2011 IEEE Electr Power Energy Conf EPEC 2011, pp. 57–61. https://doi.org/10.1109/EPEC.2011.6070253

  12. Chen B, Wan Y, Xie Z, Huang J, Zhang N, Shang C, Norman J, Li Q, Tong Y, Lau KM, Gossard AC, Bowers JE (2020) Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics 7:528–533. https://doi.org/10.1021/acsphotonics.9b01709

    Article  CAS  Google Scholar 

  13. Bolkhovityanov YB, Pchelyakov OP (2008) GaAs epitaxy on Si substrates: modern status of research and engineering. Physics-Uspekhi. 51:437–456. https://doi.org/10.1070/pu2008v051n05abeh006529

    Article  CAS  Google Scholar 

  14. Fang SF, Adomi K, Iyer S, Morkoç H, Zabel H, Choi C, Otsuka N (1990) Gallium arsenide and other compound semiconductors on silicon. J Appl Phys 68:R31–R58. https://doi.org/10.1063/1.346284

    Article  CAS  Google Scholar 

  15. Kunert B, Volz K (2019) Monolithic III/V integration on (001) Si substrate. In: Met Vap Phase Ep, pp. 241–291. Wiley. https://doi.org/10.1002/9781119313021.ch8

  16. Chen S, Liao M, Tang M, Wu J, Martin M, Baron T, Seeds A, Liu H (2017) Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express 25:4632–4639. https://doi.org/10.1364/OE.25.004632

    Article  CAS  PubMed  Google Scholar 

  17. Beanland R, Dunstan DJ, Goodhew PJ (1996) Plastic relaxation and relaxed buffer layers for semiconductor epitaxy. Adv Phys 45:87–146. https://doi.org/10.1080/00018739600101477

    Article  CAS  Google Scholar 

  18. Fitzgerald EA, Chand N (1991) Epitaxial necking in GaAs grown on pre-pattemed Si substrates. J Electron Mater 20:839–853. https://doi.org/10.1007/BF02665973

    Article  CAS  Google Scholar 

  19. Lee JW, Shichijo H, Tsai HL, Matyi RJ (1987) Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates. Appl Phys Lett 50:31–33. https://doi.org/10.1063/1.98117

    Article  CAS  Google Scholar 

  20. Grassman TJ, Brenner MR, Carlin AM, Rajagopalan S, Unocic R, Dehoff R, Mills M, Fraser H, Ringel SA (2009) Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1-y buffers. In: Conf Rec IEEE Photovolt Spec Conf, pp. 002016–002021. https://doi.org/10.1109/PVSC.2009.5411489

  21. Shimizu Y, Okada Y (2004) Growth of high-quality GaAs/Si films for use in solar cell applications. J Cryst Growth 265:99–106. https://doi.org/10.1016/j.jcrysgro.2004.01.061

    Article  CAS  Google Scholar 

  22. Lueck MR, Andre CL, Pitera AJ, Lee ML, Fitzgerald EA, Ringel SA (2006) Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage. IEEE Electron Device Lett 27:142–144. https://doi.org/10.1109/LED.2006.870250

    Article  CAS  Google Scholar 

  23. Ashery A, Elnasharty MMM, Hameed TA (2020) Investigation of electrical and dielectric properties of epitaxially grown au/n-GaAs/p-Si/Al heterojunction. Opt Quant Electron 52:490. https://doi.org/10.1007/s11082-020-02601-4

    Article  CAS  Google Scholar 

  24. Ashery A, Elnasharty MMM, Khalil AAI, Azab AA (2020) Negative resistance, capacitance in Mn/SiO2/p-Si MOS structure. Mater Res Express 7:85901. https://doi.org/10.1088/2053-1591/aba818

    Article  CAS  Google Scholar 

  25. Ashery A, Farag AAM, Elnasharty MMM, Nasr M, Azab AA (2020) Tailoring the electrical characterization of epitaxialCuInGaSe2 thin film-based device for photodiode appliances. Superlattice Microst 142:106505. https://doi.org/10.1016/j.spmi.2020.106505

    Article  CAS  Google Scholar 

  26. Ashery A, Khabiri G, Hassan A, Yousef MMK, Khalil ASG (2019) Analysis of electrical, dielectric and thermal performance of NiFe/SiO2/Si MOS device fabricated by liquid phase epitaxy. Mater Sci Semicond Process 104:104652. https://doi.org/10.1016/j.mssp.2019.104652

    Article  CAS  Google Scholar 

  27. Chełkowski A, Tomaszczyk J (1980) Dielectric physics, Elsevier Scientific Pub. Co.; PWN-Polish Scientific Publishers; Distribution for the U.S.A. and Canada Elsevier North-Holland, Amsterdam; New York; Warszawa; New York

  28. Oreshkin PT (1977) Physics of semiconductors and dielectrics. Vysshaya shkola, Moscow

    Google Scholar 

  29. Ashery A, Farag AAM, Moussa MA, Turky GM (2020) Enhancement of electrical and dielectrically performance of graphene-based promise electronic devices. Synth Met 261:116303. https://doi.org/10.1016/j.synthmet.2020.116303

    Article  CAS  Google Scholar 

  30. Bilkan Ç, Gümüş A, Altındal Ş (2015) The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs). Mater Sci Semicond Process 39:484–491. https://doi.org/10.1016/j.mssp.2015.05.044

    Article  CAS  Google Scholar 

  31. Ashery A, Gad SA, Gaballah AEH, Turky GM (2021) Fabrication, electrical and dielectric characterization of au/CNT/TiO2/SiO2/p-Si/Al with high dielectric constant, Low Loss Dielectric Tangent. ECS J Solid State Sci Technol. https://doi.org/10.1149/2162-8777/abfa2c

  32. Abdullah OG, Salman YAK, Saleem SA (2016) Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J Mater Sci Mater Electron 27:3591–3598. https://doi.org/10.1007/s10854-015-4196-4

    Article  CAS  Google Scholar 

  33. Batoo KM, Ansari MS (2012) Low temperature-fired Ni-cu-Zn ferrite nanoparticles through autocombustion method for multilayer chip inductor applications. Nanoscale Res Lett 7:112. https://doi.org/10.1186/1556-276X-7-112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Dharob MH, Kökce A, Aldemir DA, Özdemir AF, Altındal Ş (2020) The origin of anomalous peak and negative capacitance on dielectric behavior in the accumulation region in Au/(0.07 Zn-doped polyvinyl alcohol)/n-4H–SiC metal-polymer-semiconductor structures/diodes studied by temperature-dependent impedance measurements. J Phys Chem Solids 144:109523. https://doi.org/10.1016/j.jpcs.2020.109523

    Article  CAS  Google Scholar 

  35. Uluşan AB, Tataroğlu A (2018) Frequency-dependent dielectric parameters of au/TiO2/n-Si (MIS) structure. Silicon. 10:2071–2077. https://doi.org/10.1007/s12633-017-9722-y

    Article  CAS  Google Scholar 

  36. Yildiz DE, Altindal Ş, Kanbur H (2008) Gaussian distribution of inhomogeneous barrier height in Al/ SiO 2/p-Si Schottky diodes. J Appl Phys 103:124502. https://doi.org/10.1063/1.2936963

    Article  CAS  Google Scholar 

  37. Abdullah OG, Hussen SA, Alani A (2011) Electrical characterization of polyvinyl alcohol films doped with sodium iodide. Asian Trans Sci Technol 01:1–4

    Google Scholar 

  38. Sharma S, Ambrosch-Draxl C, Khan M, Blaha P, Auluck S (1999) Optical properties and band structure of semiconductors. Phys Rev B 60:8610–8615. https://doi.org/10.1103/PhysRevB.60.8610

    Article  CAS  Google Scholar 

  39. Kannan CV, Ganesamoorthy S, Subramanian C, Ramasamy P (2003) Dielectric properties of self-flux-grown RbTiOPO4 single crystals. Phys Status Solidi 196:465–470. https://doi.org/10.1002/pssa.200305941

    Article  CAS  Google Scholar 

  40. Yıldız DE, Dökme Iİ, Yildiz DE, Dökme Iİ (2011) Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO2/p-Si metal-insulator-semiconductor Schottky diodes. J Appl Phys 110:14507–145075. https://doi.org/10.1063/1.3602090

    Article  CAS  PubMed  Google Scholar 

  41. Pati B, Sutar BC, Parida BN, Das PR, Choudhury RNP (2013) Dielectric and impedance spectroscopy of barium orthovanadate ceramics. J Mater Sci Mater Electron 24:1608–1616. https://doi.org/10.1007/s10854-012-0983-3

    Article  CAS  Google Scholar 

  42. Tantis I, Psarras GC, Tasis D (2012) Functionalized graphene - poly (vinyl alcohol) nanocomposites: physical and dielectric properties. Express Polym Lett 6:283–292. https://doi.org/10.3144/expresspolymlett.2012.31

    Article  CAS  Google Scholar 

  43. Türkay S, Tataroğlu A (2021) Correction to: complex dielectric permittivity, electric modulus and electrical conductivity analysis of au/Si3N4/p-GaAs (MOS) capacitor. J Mater Sci Mater Electron 32:20918. https://doi.org/10.1007/s10854-021-06621-y

    Article  CAS  Google Scholar 

  44. He F, Lau S, Chan HL, Fan J (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21:710–715. https://doi.org/10.1002/adma.200801758

    Article  CAS  Google Scholar 

  45. Arslan E, Şafak Y, Altındal Ş, Kelekçi Ö, Özbay E (2010) Temperature dependent negative capacitance behavior in (Ni/au)/AlGaN/AlN/GaN heterostructures. J Non-Cryst Solids 356:1006–1011. https://doi.org/10.1016/j.jnoncrysol.2010.01.024

    Article  CAS  Google Scholar 

  46. Raja V, Sharma AK, Rao VVRN (2004) Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films. Mater Lett 58:3242–3247. https://doi.org/10.1016/j.matlet.2004.05.061

    Article  CAS  Google Scholar 

  47. Sattar AA, Rahman SA (2003) Dielectric properties of rare earth substituted cu–Zn ferrites. Phys Status Solidi 200:415–422. https://doi.org/10.1002/pssa.200306663

    Article  CAS  Google Scholar 

  48. Prabakar K, Narayandass SK, Mangalaraj D (2003) Dielectric properties of Cd0.6Zn0.4Te thin films. Phys Status Solidi 199:507–514. https://doi.org/10.1002/pssa.200306628

    Article  CAS  Google Scholar 

  49. Zhao W, Duan L, Zhang B, Ren X, Gao GH (2017) Tough and ultrastretchable hydrogels reinforced by poly (butyl acrylate-co-acrylonitrile) latex microspheres as crosslinking centers for hydrophobic association. Polymer (Guildf) 112:333–341. https://doi.org/10.1016/j.polymer.2017.02.032

    Article  CAS  Google Scholar 

  50. Ashery A, Said G, Arafa WA, Gaballah AEH, Farag AAM (2016) Structural and optical characteristics of PEDOT/n-Si heterojunction diode. Synth Met 214:92–99. https://doi.org/10.1016/j.synthmet.2016.01.008

    Article  CAS  Google Scholar 

  51. Andrews JM, Lepselter MP (1970) Reverse current-voltage characteristics of metal-silicide Schottky diodes. Solid State Electron 13:1011–1023. https://doi.org/10.1016/0038-1101(70)90098-5

    Article  CAS  Google Scholar 

  52. Ashery A, Elnasharty MMM, El Radaf IM (2020) Current transport and dielectric analysis of Ni/SiO2/P-Si diode prepared by liquid phase epitaxy. Silicon. https://doi.org/10.1007/s12633-020-00808-4

  53. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85–87. https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  54. Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5053. https://doi.org/10.1063/1.325607

    Article  CAS  Google Scholar 

  55. Sato K, Yasumura Y (1985) Study of forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 58:3655–3657. https://doi.org/10.1063/1.335750

    Article  Google Scholar 

  56. Tataroglu A, Ocaya R, Dere A, Dayan O, Serbetci Z, Al-Sehemi AG, Soylu M, Al-Ghamdi AA, Yakuphanoglu F (2018) Ruthenium (II) complex based photodiode for organic electronic applications. J Electron Mater 47:828–833. https://doi.org/10.1007/s11664-017-5882-1

    Article  CAS  Google Scholar 

  57. Ashery A, Gaballah AEH, Turky GM (2021) Current transport, photosensitive, and dielectric properties of PVA/n-Si heterojunction photodiode. Silicon. https://doi.org/10.1007/s12633-021-01260-8

Download references

Acknowledgments

This work was supported by the Ministry of Higher education and the scientific research of Egypt.

Availability of Data and Material

Data sharing is not applicable.

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the work.

Corresponding author

Correspondence to A. E. H. Gaballah.

Ethics declarations

Applicable.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Agree.

Conflict of Interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Gaballah, A.E.H. & Elnasharty, M.M.M. Photoresponsivity, Electrical and Dielectric Properties of GaAs/P-Si Heterojunction-Based Photodiode. Silicon 14, 6169–6183 (2022). https://doi.org/10.1007/s12633-021-01389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01389-6

Keywords

Navigation