Skip to main content
Log in

Green Synthesis for MCM-41 and SBA-15 Silica Using the Waste Mother Liquor

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In an attempt to synthesize silicas with respect to green chemistry, the synthesis of MCM-41 and SBA-15 silicas by a low-cost approach through the recycling of waste mother liquors was investigated. The addition of the mother liquor in consecutive syntheses was carried out in order to evaluate the different effects on the physical and chemical properties of the silicas. MCM-41 silicas were characterized by X-ray diffraction, which confirmed the formation of the hexagonal phase in the mother liquor used. According to the results of XRD, BET and SEM, SBA-15 silica has a structure that includes mesopores of various levels, crystallites and grains within the original particles. From the analysis of the textural characteristics of the various samples obtained through nitrogen adsorption/desorption studies carried out at -196 °C, the following conclusions can be highlighted: (i) For the synthesis of MCM-41, there was a trend of increase in specific surface areas, reduction in pore diameter and increase in wall thickness; (ii) For the synthesis of SBA-15 there was an increase in the specific surface area, an increase in the pore diameter and a reduction in the wall thickness. It was found that, under the synthesis conditions, the mother liquor user had an influence on the final characteristics of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wang Y, Li L, Liu Y, Ren X, Liang J (2016) Antibacterial mesoporous molecular sieves modified with polymeric N-halamine. Mater Sci Eng C 69:1075–1080. https://doi.org/10.1016/j.msec.2016.08.017

    Article  CAS  Google Scholar 

  2. Jaroszewska K, Masalska A, Czycz D, Grzechowiak J (2017) Activity of shaped Pt/AlSBA-15 catalysts in n-hexadecane hydroisomerization. Fuel Process Technol 167:1–10. https://doi.org/10.1016/j.fuproc.2017.06.012

  3. Costa JAS, Jesus RA, Santos DO, Mano JF, Romão LPC, Paranhos CM (2020) Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous Mesoporous Mater 291:109698. https://doi.org/10.1016/j.micromeso.2019.109698

    Article  CAS  Google Scholar 

  4. Wan Y, Zhao D (2009) Ordered mesopouros material. In: Jong KP (ed) Synthesis of solid catalyst. Wiley, Weinhein, pp 423

    Google Scholar 

  5. Meynen V, Coll P, Vansat EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  CAS  Google Scholar 

  6. Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of Supramolecular-Templated Mesoporous Materials. Angew C Inter Ed 38:56–77. https://doi.org/10.1002/(sici)1521-3773(19990115)38:1/2<56::aid-anie56>3.0.co;2-e

    Article  CAS  Google Scholar 

  7. Beck JS, Artuli JC, Roth WJ, Leonowicz ME, Kresge CT et al (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  8. Cai Q, Lin WY, Xiao FS, Pang WQ, Chen XH, Zou BS (1999) The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous Mesoporous Mater 32:1–15. https://doi.org/10.1016/s1387-1811(99)00082-7

    Article  CAS  Google Scholar 

  9. Zhao E, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  10. Liu J, Yu J (2016) Toward greener and designed synthesis of zeolite materials. In: Zeolites and Zeolite-like Materials. https://doi.org/10.1016/b978-0-444-63506-8.00001-x

  11. Duan F, Li J, Chen P, Yu J, Xu R (2009) A low-cost route to the syntheses of microporous cobalt-substituted aluminophosphates by using the waste mother-liquor. Microporous Mesoporous Mater 126:26–31. https://doi.org/10.1016/j.micromeso.2009.05.015

    Article  CAS  Google Scholar 

  12. Liu Z, Li H, Zhang T, Wang Y et al (2020) Mother liquor induced preparation of SAPO-34 zeolite for MTO reaction. Catal Today 358:109–115. https://doi.org/10.1016/j.cattod.2020.03.034

    Article  CAS  Google Scholar 

  13. Ghrear TMA, Ng EP, Vaulot C, Daou TJ, Ling TC, Tan SH, Ooi BS, Mintova S (2020) Recyclable synthesis of Cs-ABW zeolite nanocrystals from non-reacted mother liquors with excellent catalytic henry reaction performance. J Environ Chem Eng 8:103579. https://doi.org/10.1016/j.jece.2019.103579

    Article  CAS  Google Scholar 

  14. Yang J, Huang Y-X, Pan Y, Mi J-X (2020) Green synthesis and characterization of zeolite silicalite-1 from recycled mother liquor. Microporous Mesoporous Mater 303:110247. https://doi.org/10.1016/j.micromeso.2020.110247

    Article  CAS  Google Scholar 

  15. Sahin F, Topuz B, Kalipçilar H (2018) Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors. Microporous Mesoporous Mater 261:259–267. https://doi.org/10.1016/j.micromeso.2017.11.020

    Article  CAS  Google Scholar 

  16. Zhong J, Han J, Wei Y, Tian P, Guo X, Song C, Liu Z (2017) Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Cat Sci Technol 7:4905–4923. https://doi.org/10.1039/c7cy01466j

    Article  CAS  Google Scholar 

  17. Xi D, Sun Q, Chen X, Wang N, Yu J (2015) The recyclable synthesis of hierarchical zeolite SAPO-34 with excellent MTO catalytic performance. Chem Commun 51(60):11987–11989. https://doi.org/10.1039/c5cc03904e

    Article  CAS  Google Scholar 

  18. Ng E-P, Goh J-Y, Ling TC, Mukti RR (2013) Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor. Nanoscale Res Lett 8:120. https://doi.org/10.1186/1556-276x-8-120

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen TL, Kim H, Pan SY, Tseng PC, Lin YP, Chiang PC (2020) Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci Total Environ 716:136998. https://doi.org/10.1016/j.scitotenv.2020.136998

    Article  CAS  PubMed  Google Scholar 

  20. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/b918763b

    Article  CAS  PubMed  Google Scholar 

  21. Lu D, Xu S, Qiu W, Sun Y, Liu X, Yang J, Ma J (2020) Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment. J Clean Prod 264:121644. https://doi.org/10.1016/j.jclepro.2020.121644

    Article  CAS  Google Scholar 

  22. Bezerra DM, Zapelini IW, Franke KN, Ribeiro ME, Cardoso D (2019) Investigation of the structural order and stability of mesoporous silicas under a humid atmosphere. Mater Charact 154:103–115. https://doi.org/10.1016/j.matchar.2019.05.032

    Article  CAS  Google Scholar 

  23. Adrover ME, Pedernera M, Bonne M, Lebeau B, Bucalá V, Gallo L (2020) Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate. Saudi Pharma J 28:15–24. https://doi.org/10.1016/j.jsps.2019.11.002

    Article  CAS  Google Scholar 

  24. Marinho JC, Barbosa TLA, Rodrigues MGF (2018) Preparation of molecular sieve Al-SBA-15 with two ratios Si/Al catalyst for use in the transesterification reaction of soybean oil. Mater Sci Forum 912:39–43. https://doi.org/10.4028/www.scientific

    Article  Google Scholar 

  25. Wijaya DP, Trisunaryanti W, Dewi TK, Marsuki MF (2018) Synthesis and characterization Of K2O/MCM-41 (Mobil Composition of Matter No. 41) from lapindo mud by sonochemical method for transesterification catalyst of used cooking oil. Orient J Chem 34(4):1847–1853. https://doi.org/10.13005/ojc/3404019

    Article  CAS  Google Scholar 

  26. Cotea VV, Luchian CE, Bilba N, Niculaua M (2012) Mesoporous silica SBA-15. a new adsorbent for bioactive polyphenols from red wine. Anal Chim Acta 732:180–185. https://doi.org/10.1016/j.aca.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  27. Koh CA, Nooney R, Tahir S (1997) Characterization and catalytic properties of MCM-41 and Pd/MCM‐41 materials. Catal Lett 47:199–205. https://doi.org/10.1023/A:1019025609426

    Article  CAS  Google Scholar 

  28. Zholobenko V, Garforth A, Dwyer J (1997) TGA-DTA study on calcination of zeolitic catalysts. Thermo Acta 294:39–44. https://doi.org/10.1016/s0040-6031(96)03140-1

    Article  CAS  Google Scholar 

  29. Holmes SM, Zholobenko VL, Thursfield A, Plaisted RJ, Cundy CS, Dwyer J (1998) In situ FTIR study of the formation of MCM-41. J Chem Soc Faraday Trans 94:2025–2032. https://doi.org/10.1039/a801898g

    Article  CAS  Google Scholar 

  30. Marinescu G, Culita DC, Romanitan C, Somacescu S et al (2020) Novel hybrid materials based on heteroleptic Ru(III) complexes immobilized on SBA-15 mesoporous silica as highly potent antimicrobial and cytotoxic agents. Appl Surf Sci 520:146379. https://doi.org/10.1016/j.apsusc.2020.146379

    Article  CAS  Google Scholar 

  31. Wang X, Chan JCC, Tseng YH, Cheng S (2006) Synthesis, characterization and catalytic activity of ordered SBA-15 materials containing high loading of diamine functional groups. Microporous Mesoporous Mater 78:58–65. https://doi.org/10.1016/j.micromeso.2006.05.003

    Article  CAS  Google Scholar 

  32. Siverstein RW, Bassler GC (1962) Spectrometric Identification of Organic Compounds. J Chem Educ 39:546–553. https://doi.org/10.1021/ed039p546

    Article  Google Scholar 

  33. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  34. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized bay a liquid-crystal template mechanism. Nature 359:710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  35. Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials control of porosity and morphology. Microporous Mesoporous Mater 27:207–2016. https://doi.org/10.1016/s1387-1811(98)00255-8

    Article  Google Scholar 

  36. Ferrer DM, Banda JAM, Rodrigo RS, García UP, Gómez JYV, Vicente PDA (2018) Synthesis of micro/nanostructured carbon from refined sugar and its electrochemical performance. Inter J Electrochem Sci 13:708–718. https://doi.org/10.20964/2018.01.65

    Article  CAS  Google Scholar 

  37. Katiyar A, Yadav S, Smirniotis PG, Pinto NG (2006) Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J Chromatogr 1122:13–20. https://doi.org/10.1016/j.chroma.2006.04.055

    Article  CAS  Google Scholar 

  38. Chao MC, Lin HP, Sheu HS, Mou CY (2002) A study of morphology of mesoporous silica SBA- 15. Stud Surf Sci Catal 141:387–394

    Article  CAS  Google Scholar 

  39. IUPAC Recommendations (1985) Pure Appl Chem 57:603–619

    Article  Google Scholar 

  40. Lin YW, Cheng TW, Lo KW, Chen CY, Lin KL (2020) Synthesis and characterization of a mesoporous Al-MCM-41 molecular sieve material and its moisture regulation performance in water molecule adsorption/desorption. Microporous Mesoporous Mater 310:110643. https://doi.org/10.1016/j.micromeso.2020.110643

    Article  CAS  Google Scholar 

  41. Yin Y, Wen Z-H, Liu X-Q, Yuan A-H, Shi L (2017) Functionalization of SBA-15 with CeO2 nanoparticles for adsorptive desulfurization: Matters of template P123. Adsorpt Sci Technol. https://doi.org/10.1177/0263617417734767

  42. Rodrigues JJ, Fernandes FAN, Rodrigues MGF (2013) Study of Co/SBA-15 catalysts prepared by microwave and conventional heating methods and application in Fischer-Tropsch synthesis. Appl Catal A 468:32–37. https://doi.org/10.1016/j.apcata.2013.08.035

  43. Janus R, Wadrzyk M, Lewandowski M, Natkanski P, Latka P, Kustrowaki P (2020) Understanding porous structure of SBA-15 upon pseudomorphic transformation into MCM-41: Non-direct investigation by carbon replication. J Ind Eng Chem 92:131–144. https://doi.org/10.1016/j.jiec.2020.08.032

    Article  CAS  Google Scholar 

  44. Janus R, Wadrzyk M, Natkanski P, Cool P, Kustrowaki P (2019) Dynamic adsorption-desorption of methyl ethyl ketone on MCM-41 and SBA-15 decorated with thermally activated polymers. J Ind Eng Chem 71:465–480. https://doi.org/10.1016/j.jiec.2018.12.004

    Article  CAS  Google Scholar 

  45. Deng X, Chen K, Tuysuz H (2017) Protocol for the nanocasting method: preparation of ordered mesoporous metal oxides. Chem Mater 29:40–52. https://doi.org/10.1021/acs.chemmater.6b02645

    Article  CAS  Google Scholar 

  46. Serrano DP, Calleja G, Botas JA, Gutierrez FJ (2004) Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. Ind Eng Chem Res 43:7010–7018. https://doi.org/10.1021/ie040108d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful financial support provided by Coordenação de Aperfeiçoamento de Pessoal de NívelSuperior (CAPES).

Funding

This study was funded Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Thianne S. B. Barbosa and Thiago R. B. Barros; methodology, Thianne S. B. Barbosa and Thiago R. B. Barros; writing - original draft preparation, Thianne S. B. Barbosa; writing - review and editing, Tellys L. A. Barbosa and Meiry G. F. Rodrigues. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Meiry Gláucia Freire Rodrigues.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, T.S.B., Barros, T.R.B., Barbosa, T.L.A. et al. Green Synthesis for MCM-41 and SBA-15 Silica Using the Waste Mother Liquor. Silicon 14, 6233–6243 (2022). https://doi.org/10.1007/s12633-021-01329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01329-4

Keywords

Navigation