Skip to main content
Log in

Breakdown Voltage Enhancement of Al0.1Ga0.9 N Channel HEMT with Recessed Floating Field Plate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, electrical and microwave characteristics of Al0.1Ga0.9 N channel HEMTs was reported. The device performance were evaluated for conventional gate, field plate gate, and recessed floating field plate with Silicon nitride (SiN)/Hafnium oxide (HfO2) passivation. The recessed floating field plate HEMT with gate length LG = 0.8 μm, gate to drain distance LGD = 1 μm, and HfO2 (SiN) passivation HEMT reports peak drain current density (IDS) of 0.282(0.288) A/mm at VGS = 0 V, three terminal off-state breakdown voltage (VBR) of 677 (617) V, 6.38 Ω.mm of ON-resistance (RON), transconductance (gm,max) of 93(95) mS/mm, and FT/FMAX of 11.4/49 (12/22) GHz. The HfO2 (SiN) passivation device demonstrated the Johnson figure of merit (JFoM)) of 7.71 (7.404) THz.V and FMAX x VBR product of 33.173 (13.574) THz.V. The high JFoM along with high FMAX x VBR indicates the potential of the ultrawide bandgap AlGaN HEMTs for future power switching and high-power microwave applications. The breakdown voltage (VBR) of the floating field plate HEMT is improved 54 % from conventional HEMT and 31 % improvement from gate field plate HEMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Zeng F, An JX, Zhou G, Li W, Wang H, Duan T, Jiang L, Yu H (2018) A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability. Electronics 7:377. https://doi.org/10.3390/electronics7120377

  2. Roccaforte F, Fiorenza P, Greco G, Nigro RL, Giannazzo F, Iucolano F, Saggio M (2018) Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron Eng 187–188:66–77. https://doi.org/10.1016/j.mee.2017.11.021

    Article  CAS  Google Scholar 

  3. Husna Hamza K, Nirmal D (2020) A review of GaN HEMT broadband power amplifiers, AEU. Int J Electron Commun 116:153040. https://doi.org/10.1016/j.aeue.2019.153040

    Article  Google Scholar 

  4. Ma C-T, Gu Z-H (2019) Review of GaN HEMT applications in power converters over 500 W. Electronics 8(12):1401. https://doi.org/10.3390/electronics8121401

    Article  CAS  Google Scholar 

  5. Flack TJ, Pushpakaran BN, Bayne SB (2016) GaN technology for power electronic applications: a review. J Electron Mater 45:2673–2682. https://doi.org/10.1007/s11664-016-4435-3

    Article  CAS  Google Scholar 

  6. Tong X, Zhang S, Xu J, Zheng P, Shi X, Huang Y, Wang Q (2018) 18-31 GHz GaN wideband low noise amplifier (LNA) using a 0.1 µm T‐gate high electron mobility transistor (HEMT) process. Int J RF Microwave Comput Aided Eng 28:e21425. https://doi.org/10.1002/mmce.21425

    Article  Google Scholar 

  7. Jarndal A, Hussein A, Crupi G, Caddemi A (2020) Reliable noise modeling of GaN HEMTs for designing low-noise-amplifiers. IJNM 33:e2585. https://doi.org/10.1002/jnm.2585

    Article  Google Scholar 

  8. Nalli A, Raffo A, Crupi G, D’Angelo S, Resca D, Scappaviva F, Salvo G, Caddemi A, Vannini G (2015) GaN HEMT noise model based on electromagnetic simulations. IEEE Trans Microw Theory Tech 63:2498–2508. https://doi.org/10.1109/TMTT.2015.2447542

    Article  CAS  Google Scholar 

  9. Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T, Tokuda Y, Aoyagi Y (2007) First operation of AlGaN channel high electron mobility transistors. Appl Phys Express 1:011101. https://doi.org/10.1143/APEX.1.011101

    Article  CAS  Google Scholar 

  10. Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y, Aoyagi Y (2008) Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors. Appl Phys Lett. 92:263502. https://doi.org/10.1063/1.2949087

    Article  CAS  Google Scholar 

  11. Nanjo T, Takeuchi M, Imai A, Suita M, Oishi T, Abe Y, Yagyu E, Kurata T, Tokuda Y, Aoyagi Y (2009) AlGaN channel HEMTs on AlN buffer layer with sufficiently low off-state drain leakage current. Electron Lett 45:1346–1348. https://doi.org/10.1049/el.2009.2711

    Article  CAS  Google Scholar 

  12. Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E, Tokuda Y (2013) AlGaN channel HEMT with extremely high breakdown voltage. IEEE Trans Electron Devices 60:1046–1053. https://doi.org/10.1109/TED.2012.2233742

  13. Bajaj S, Akyol F, Krishnamoorthy S, Zhang Y, Rajan S (2016) AlGaN channel field effect transistors with graded heterostructure ohmic contacts. Appl Phys Lett 109:133508. https://doi.org/10.1063/1.4963860

    Article  CAS  Google Scholar 

  14. Baca AG, Armstrong AM, Allerman AA, Douglas EA, Sanchez CA, King MP, Coltrin ME, Fortune TR, Kaplar RJ (2016) An AlN/Al0.85Ga0.15N high electron mobility transistor. Appl Phys Lett 109:033509. https://doi.org/10.1063/1.4959179

    Article  CAS  Google Scholar 

  15. Muhtadi S, Hwang SM, Coleman A, Asif F, Simin G, Chandrashekhar MVS, Khan A (2017) High electron mobility transistors with Al0.65Ga0.35N channel layers on thick AlN/sapphire templates. IEEE Electron Device Lett 38:914–917. https://doi.org/10.1109/LED.2017.2701651

  16. Zhang W, Zhang J, Xiao M, Zhang L, Hao Y (2018) High breakdown-voltage (> 2200 V) AlGaN-channel HEMTs with ohmic/schottky hybrid drains. IEEE J Electron Devices Soc 6:931–935. https://doi.org/10.1109/JEDS.2018.2864720

    Article  CAS  Google Scholar 

  17. Xiao M, Zhang J, Duan X, Zhang W, Shan H, Ning J, Hao Y (2018) High performance Al0.10Ga0.90N Channel HEMTs. IEEE Electron Device Lett 39:1149–1151. https://doi.org/10.1109/LED.2018.2848661

  18. Baca AG, Klein BA, Wendt JR, Lepkowski SM, Nordquist CD, Armstron AM, Allerman AA, Douglas EA, Kaplar RJ (2019) RF performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm gates. IEEE Electron Device Lett 40:17–20. https://doi.org/10.1109/LED.2018.2880429

    Article  CAS  Google Scholar 

  19. Armstrong AM, Klein BA, Baca AG, Allerman AA, Douglas EA, Colon A, Abate VM, Fortune TR (2019) AlGaN polarization-doped field effect transistor with compositionally graded channel from Al0.6Ga0.4N to AlN. Appl Phys Lett 114:052103. https://doi.org/10.1063/1.5058263

    Article  CAS  Google Scholar 

  20. Xue H, Hwang S, Razzak T, Lee C, Ortiz GC, Xia Z, Sohel SH, Hwang J, Rajan S, Khan A, Lu W (2020) All MOCVD grown Al0.7Ga0.3N/Al0.5Ga0.5N HFET: An approach to make ohmic contacts to Al-rich AlGaN channel transistors. Solid State Electron 164:107696. https://doi.org/10.1016/j.sse.2019.107696

    Article  CAS  Google Scholar 

  21. Wang Zhong-Xu, Du Lin, Liu Jun-Wei, Wang Ying, Jiang Yun, Ji Si-Wei, Dong Shi-Wei, Chen Wei-Wei, Tan Xiao-Hong, Li Jin-Long, Li Xiao-Jun, Zhao Sheng-Lei, Zhang Jin-Cheng, Yue Hao (2019) Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height. Chin Phys B 29:027301. https://doi.org/10.1088/1674-1056/ab5fb9

    Article  CAS  Google Scholar 

  22. Mollah S, Gaevski M, Hussain K, Mamun A, Floyd R, Hu X, Chandrashekhar MVS, Simin G, Khan A (2019) Current collapse in high-Al channel AlGaN HFETs. Appl Phys Express 12:074001. https://doi.org/10.7567/1882-0786/ab24b1

    Article  Google Scholar 

  23. Erica A. Douglas, Brianna Klein, Andrew A. Allerman, Albert G. Baca, Torben Fortune, Andrew M. Armstrong (2019) Enhancement-mode AlGaN channel high electron mobility transistor enabled by p-AlGaN gate. J Vacuum Sci Technol B 37:021208. https://doi.org/10.1116/1.5066327

    Article  CAS  Google Scholar 

  24. Reza S, Klein BA, Baca AG, Armstrong AM, Allerman AA, Douglas EA, Kaplar RJ (2019) High-frequency, high-power performance of AlGaN-channel high-electron-mobility transistors: an RF simulation study. Jpn J Appl Phys 58:SCCD04. https://doi.org/10.7567/1347-4065/ab07a5

    Article  CAS  Google Scholar 

  25. Wu Y, Zhang J, Zhao S, Zhang W, Zhang Y, Duan X, Chen J, Hao Y (2019) More than 3000 V reverse blocking schottky-drain AlGaN-channel HEMTs with > 230MW/cm2 power figure-of-merit. IEEE Electron Device Lett 40:1724–1727. https://doi.org/10.1109/LED.2019.2941530

  26. Xiao M, Zhang W, Zhang Y, Zhou H, Dang K, Zhang J, Hao Y (2019) Novel 2000 V normally-off MOS-HEMTs using AlN/GaN Superlattice channel. 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp 471–474. https://doi.org/10.1109/ISPSD.2019.8757585

  27. Zhang Y, Li Y, Wang J, Shen Y, Du L, Li Y, Wang Z, Shengrui U, Zhang J, Hao Y (2020) High-performance AlGaN double channel HEMTs with improved drain current density and high breakdown voltage. Nanoscale Res Lett 15:114. https://doi.org/10.1186/s11671-020-03345-6

  28. Shahadat H. Sohel, Andy Xie, Edward Beam, Hao Xue, Towhidur Razzak, Sanyam Bajaj, Sherry Campbell, Donald White, Kenneth Wills, Yu Cao, Wu Lu, Siddharth Rajan (2020), Improved DC-RF dispersion with epitaxial passivation for high linearity graded AlGaN channel field effect transistors. Appl Phys Express 13:036502. https://doi.org/10.35848/1882-0786/ab7480

    Article  CAS  Google Scholar 

  29. Li L, Yamaguchi R, Wakejima A (2020) Polarization engineering via InAlN/AlGaNheterostructures for demonstration of normally-off AlGaN channel field effect transistors. Appl Phys Lett 117:152108. https://doi.org/10.1063/5.0020359

    Article  CAS  Google Scholar 

  30. Farahmand M, Garetto C, Bellotti E, Brennan KF, Goano M, Ghillino E, Ghione G, Albrecht JD, Ruden PP (2001) Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans Electron Devices 48:535–542. https://doi.org/10.1109/16.906448

    Article  CAS  Google Scholar 

  31. Patrick H. Carey, Fan Ren, Albert G. Baca, Brianna A. Klein, Andrew A. Allerman, Andrew M. Armstrong, Erica A. Douglas, Robert J. Kaplar, Paul G. Kotula, Stephen J. Pearton (2019) Operation up to 500°C of Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors. IEEE J Electron Devices Soc 7:444–452. https://doi.org/10.1109/JEDS.2019.2907306

    Article  CAS  Google Scholar 

  32. Coltrin ME, Baca AG, Kaplar RJ (2017) Analysis of 2D transport and performance characteristics for lateral power devices based on AlGaN alloys. ECS J Solid State Sci Technol 6:S3114–S3118. https://doi.org/10.1149/2.0241711jss

    Article  CAS  Google Scholar 

  33. Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B, Eastman LF (2002) Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J Phys: Condense Matter 14:3399–3434. https://doi.org/10.1088/0953-8984/14/13/302

    Article  CAS  Google Scholar 

  34. Int SILVACO. ATLAS User’s Manual; Device Simulation Software: Santa Clara, CA, USA, 2016; Available online: https://www.silvaco.com

  35. Murugapandiyan P, Hasan MT, Lakshmi VR, Wasim M, Ajayan J, Ramkumar N, Nirmal D (2020) Breakdown voltage enhancement of gate field plate Al0.295Ga0.705 N/GaN HEMTs. Int J Electron. https://doi.org/10.1080/00207217.2020.1849819

    Article  Google Scholar 

  36. Murugapandiyan P, Nirmal D, Ajayan J, Aarthy Vargheese, Ramkumar N (2021) Investigation of influence of SiN and SiO2 passivation in gate field plate double heterojunction Al0.3Ga0.7N/GaN/Al0.04Ga0.96N high electron mobility transistors. Silicon. https://doi.org/10.1007/s12633-020-00899-z

    Article  Google Scholar 

  37. Kumar JSR, Nirmal D, Hooda MK, Singh S, Ajayan J, Arivazhagan L (2021) Intensive study of field-plated AlGaN/GaN HEMT on silicon substrate for high power RF applications. Silicon. https://doi.org/10.1007/s12633-021-01199-w

  38. Kumar JSR, Nirmal D, Hooda MK, Surider Singh, Ajayan J, Arivazhagan L (2021) Highly scaled graded channel GaN HEMT with peak drain current of 2.48A/mm (2021). AEU- Int J Electron Commun 136:153774. https://doi.org/10.1016/j.aeue.2021.153774

  39. Bulutay C (2002) Electron initiated impact ionization in AlGaN alloys. Semicond Sci Technol 17:59–62https://doi.org/10.1088/0268-1242/17/10/102

Download references

Acknowledgements

The authors acknowledge the Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India for research facility and support to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

All the works reported in this paper is original and have done with equal contribution in all the sections by Ramkumar Natarajan and Eswaran Parthasarathy.

Corresponding author

Correspondence to Eswaran Parthasarathy.

Ethics declarations

Manuscripts is prepared strictly adhering to the norm of the journal, contains 5 Sections and no sub sections.

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Conflicts of Interest/Competing Interests

The authors declare that there is no conflict of interest reported in this paper.

Consent for Publication

Not applicable as the manuscript does not contain any data from individual.

Disclosure of Potential Conflicts of Interest

Not Applicable.

Research Involving Human Participants and/or Animals

Not Applicable.

Informed Consent

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, R., Parthasarathy, E. Breakdown Voltage Enhancement of Al0.1Ga0.9 N Channel HEMT with Recessed Floating Field Plate. Silicon 14, 5961–5973 (2022). https://doi.org/10.1007/s12633-021-01322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01322-x

Keywords

Navigation