Skip to main content
Log in

2-D Analytical Modeling and Simulation of Dual Material, Double Gate, Gate Stack Engineered, Junctionless MOSFET based Biosensor with Enhanced Sensitivity

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, a 2 − D analytical model of Dielectrically Modulated, Dual Material, Double Gate Junctionless MOSFET (DMDG-JL-MOSFET) based label free biosensor has been proposed to investigate the effect of high-κ gate dielectric materials (TiO2, HfO2, and Al2O3) and cavity length variation on the sensitivity of the biosensor. The model has been validated with data obtained from Sentaurus TCAD simulator. The variation in threshold voltage (Vth), drain current (Id) and ION/IOFF ratio has been used as the sensing metric to estimate the sensitivity of the proposed biosensor. It has been observed that at a cavity length (Lcav) of 25 nm, TiO2 shows 87%, 68% and 52% higher sensitivity than if SiO2 is taken as gate dielectric in case of neutral, positively charged and negatively charged biomolecules respectively. Further, the effectiveness of the proposed DMDG-JL-MOSFET based biosensor is confirmed by benchmarking the sensitivity metric with contemporary architectures of JL-MOSFET based biosensor. We have reported that DMDG-JL-MOSFET exhibits significant increase in sensitivity when compared to other contemporary JL-MOSFET based biosensors, thus making the proposed device an attractive solution for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergveld P (1986) The development and application of fet-based biosensors. Biosensors. 2(1):15–33

    Article  CAS  Google Scholar 

  2. Im H., Huang X.-J., Gu B., Choi Y.-K. (2007) A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2:430–434

    Article  CAS  Google Scholar 

  3. Gu B., Park T.J., Ahn J.-H., Huang X.-J., Lee S.Y., Choi Y.-K. (2009) Nanogap field-effect transistor biosensors for electrical detection of avian influenza, Small (Weinheim an der Bergstrasse, Germany.) 21

  4. Kim C.-H., Jung C., Park H.G., Choi Y.-K. (2008) Novel dielectric modulated field-effect transistor for label-free dna detection. Biochip J. 2(2):127–134

    Google Scholar 

  5. Choi J.-M., Han J.-W., Choi S.-J., Choi Y.-K. (2010) Analytical modeling of a nanogap-embedded fet for application as a biosensor. IEEE Trans. Electron Devices 57:3477–3484

    Article  CAS  Google Scholar 

  6. Rostami M., Mohanram K. (2011) Dual-vth independent-gate finfets for low power logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(3):337–349

    Article  Google Scholar 

  7. Li X., Chen Z., Shen N., Sarkar D., Singh N., Banerjee K., Lo G. , Kwong D. (2011) Vertically stacked and independently controlled twin-gate MOSFETs on a single si nanowire. IEEE Electron Device Lett. 32(11):1492–1494

    Article  CAS  Google Scholar 

  8. Li C., Zhuang Y., Di S., Han R. (2013) Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 60(11):3655–3662

    Article  Google Scholar 

  9. Wong H. (2011) Beyond the conventional mosfet. Proceeding of 31th European Solid State Device Research Conference 5 (69)

  10. Afzalian A., Akhavan N.D. (2009) Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5)

  11. Colinge J.P., Lee C.W. (2010) Reduced electric field in junctionless transistors, Appl.Phys. Lett. 96(7):073510

  12. Lee C.-W., Akhavan N. D. (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices 57(3):620–625

    Article  CAS  Google Scholar 

  13. Li C., Zhuang Y., Han R. (2013) Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 60(11):3655– 3662

    Article  Google Scholar 

  14. Wang T., Lou L., Lee C. (2013) A junctionless gate-all-around silicon nanowire fet of high linearity and its potential applications. IEEE Trans. Electron Devices 34(4):478–480

    Article  Google Scholar 

  15. Colinge L., Jean-Pierre C.-W. (2010) Nanowire transistors without junctions. Nat. Neurosci. 5(5):225–229

  16. Buitrago E., Giorgos F., Badia M.F.B., Georgiev Y.M., Berthomé M., Ionescu A.M. (2013) Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sensors Actuators B Chem. 183(183):1–10

  17. Narang R., Saxena M., Gupta M. (2015) Investigation of dielectric modulated (dm) double gate (dg) junctionless mosfets for application as a biosensors. Superlattices and Microstructures 85(85):557–572

  18. Ahangari Z. (2016) Performance assessment of dual material gate dielectric modulated nanowire junctionless mosfet for ultrasensitive detection of biomolecules. RSC Adv. 6(96):89185–8919

    Article  CAS  Google Scholar 

  19. Chakraborty A. (2017) Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate mosfet (jlgssrg) for application as biosensor. J. Comput. Electron. 16(16):556–567

  20. Ajay N.R. (2017) Modeling of gate underlap junctionless double gate mosfet as bio-sensor. Mater. Sci. Semicond Process 71(71):240–251

  21. Singh S, Raja B. (2018) Analytical modeling of split-gate junction-less transistor for a biosensor application. Sensing and Bio-Sensing Research 18(18):31–36

  22. Ouarghi N.H.M., Dibi Z. (2018) Impact of triple-material gate and highly doped source/drain extensions on sensitivity of dna biosensor. J. Comput. Electron. 17(4):1797– 1806

    Article  CAS  Google Scholar 

  23. Parihar M.S., Kranti A. Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology. 26(14)

  24. Barik M.A., Deka R., Dutta J.C. (2016) Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sensors J. 16(2):280–286

    Article  Google Scholar 

  25. Long W., Chin K.K. (1997) Dual material gate field effect transistor(dmgfet), International Electron Devices Meeting, IEDM Technical Diges 46, 549–552

  26. Ajay M, Narang R., Gupta M. (2013) Investigation of dielectric-modulated doublegate junctionless MOSFET for detection of biomolecules, Annu. IEEE India Conf.INDICON 3(3):1–6

  27. Wang W., Liu D., Liu X., Pan L. (2000) Exploring the novel characteristics of hetero-material gate field-effect transistors (hmg fets) with gate-material engineering. IEEE Trans. Electron. Devices 47:113–120

    Article  Google Scholar 

  28. Dollfus P.H.P. (1993) Monte carlo study of a 50 nm-dual-gate HEMT providing against short-channel effects. Solid State Electron. 36:711–715

    Article  Google Scholar 

  29. Poonam R.G.K., Saxena M. (2005) Modeling and simulation of stacked gate oxide (stgo) architecture in silicon-on-nothing (son) MOSFET. Solid-State Electron. 49(10):1639–1648

    Article  Google Scholar 

  30. Pradhan K.P., Mohapatra S.K., Behera D. (2014) Impact of high-k gate dielectric on analog and rf performance of nanoscale dg MOSFET, Microelectron J. 45(45):144–151

  31. Nair P.R., Alam M.A. (2007) Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(54):3400–3408

  32. Chattopadhyay A., Tewari S., Gupta P.S. (2021) Dual-metal double-gate with low-k/High-k oxide stack junctionless MOSFET for a wide range of protein detection: A fully electrostatic based numerical approach. Silicon 45(13):441–450. https://doi.org/10.1007/s12633-020-00430-4

    Article  Google Scholar 

  33. Parihar M.S., Ghosh D., Kranti A. (2012) Bipolar effects in unipolar junctionless transistors, Appl. Phys. Lett. 101, 093507–1-093507-3

  34. Choi S.-Y., Choi Y.-K. (2007) Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. 25(25):443–447

  35. Park T.J., Choi Y.-K. (2010) A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor, Appl Phys. Lett. 97, 073702

  36. Choi Y.-K., Park T.J., Lee S.Y. (2010) An underlap field-effect transistor for electrical detection of influenza, Appl.Phys.Lett 96, 073702

  37. Young K.K. (1989) Short-channel effect in fully depleted soi MOSFETs. IEEE Trans. Electron Devices 36(2):399–402

    Article  Google Scholar 

  38. (2013) Tcad Sentaurus device user manual, Synopsys, CA

  39. Busse M.S., Scheumann V. (2002) Sensitivity studies for specific binding reactions using the biotin/streptavidin. Phys Rev. E. 17(8):704–710

    CAS  Google Scholar 

  40. Densmore B.L.A., Cheben P., Schmid J.H. (2008) Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature independent response, Opt. Lett. 33(33):596–598

  41. Douvas A., Argitis P., Normand P., Gotszalk T., Woszczyna M., Glezos N. (2008) Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectronics Eng. 85(5):1399–1402

    Google Scholar 

  42. Woszczyna M., Glezos N. (2018) Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectronics Eng. 90(5):1399–1402

    Google Scholar 

  43. Kinsella A.J. (2007) Taking charge of biomolecules. Nat. Nanotech. 2(2):596–597

  44. Lundstrom M.S (2002) Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49(49):133–141

  45. Reddy G.V., Kumar M.J. (2005) A new dual-material double-gate (dmdg) nanoscale soi MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 4(2):260–268

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the grant under Faculty Research Scheme (FRS/117/2017-18/ECE) and grant under DST (FIST) (257)/2020-2021/713/ECE at Department of Electronics Engineering, IIT(ISM), Dhanbad.

Funding

This work is partially supported by the grant under Faculty Research Scheme (FRS/117/2017-18/ECE) and grant under DST (FIST) (257)/2020-2021/713/ECE at Department of Electronics Engineering, IIT(ISM), Dhanbad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kumari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Singh, N.K., Sahoo, M. et al. 2-D Analytical Modeling and Simulation of Dual Material, Double Gate, Gate Stack Engineered, Junctionless MOSFET based Biosensor with Enhanced Sensitivity. Silicon 14, 4473–4484 (2022). https://doi.org/10.1007/s12633-021-01223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01223-z

Keywords

Navigation