Skip to main content
Log in

Dielectric Properties of Coronene Film Deposited onto Silicon Substrate by Spin Coating for Optoelectronic Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

To determine the electrical modulus, dielectric properties, and ac conductivity of Coronene semiconductor layer, we have produced Al/Coronene/n-Si structure by using the thermally evaporation and spin coating method. The variation of dielectric constant (ε), dielectric imaginary part (ε), tangent loss (tanδ), electrical modulus (M and M), and ac electrical conductivity (σac) with voltage and frequency of Coronene semiconductor layer have been investigated in the frequency range of 1 kHz – 1 MHz and at the selected voltages (0.0–0.4 V with steps 0.02 V). It is found that theεandεvalues decrease with increasing frequency while an increase is observed in tanδ, σac, and the real (M) and the imaginary (M) of the electrical modulus. The ε, ε, tanδ, σac, M, and M values have been determined as 6.53, 8.58, 1.31, 0.0477 S/cm, 0.0561 and 0.0477 for 1 kHz and 0.0046, 0.129, 2.78, 7.17 S/cm, 0.278, and 7.74 for 1 MHz at 0.0 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tuğluoğlu N, Karadeniz S, Barış B (2014) Electrical modulus and dielectric spectroscopy behavior of spin coated perylene-monoimide semiconductor films. Mater Sci Semicond Process 27:891–898

    Article  Google Scholar 

  2. Gökçen M (2013) Dielectric properties of au/PVA (cobalt-doped)/n-Si photoconductive diodes. J Electron Mater 42:103–108

    Article  Google Scholar 

  3. El-Nahass MM, Farid AM, Atta AA (2016) AC conductivity and dielectric relaxation of bulk tris (8-hydroxyquinoline) aluminum organic semiconductor. Opt Quant Electron 48:458

    Article  Google Scholar 

  4. Hajlaoui S, Chaabane I, Oueslati A, Guidara K (2015) Electrical transport properties and modulus behavior of the organic–inorganic [N(C3H7)4]2SnCl6 compound. Physica B 474:90–96

    Article  CAS  Google Scholar 

  5. Yahia IS, Zahran HY, Alamri FH (2016) Pyronin Y as new organic semiconductors: Structure, optical spectroscopy and electrical/dielectric properties. Synth Met 218:19–26

    Article  CAS  Google Scholar 

  6. Yalçın O, Coşkun R, Okutan M, Öztürk M (2013) Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels. J Phys Chem B 117:8931–8938

    Article  Google Scholar 

  7. Mansour SA, Yahia IS, Yakuphanoğlu F (2010) The electrical conductivity and dielectric properties of C.I. basic violet 10. Dyes Pigments 87:144–148

    Article  CAS  Google Scholar 

  8. Chandra KP, Gupta RN, Prasad K (2008) Electrıc modulus and dıelectrıc studıes of alızarın doped anthraquınone. Int J Mod Phys B 22:2321–2331

    Article  CAS  Google Scholar 

  9. Ramesh S, Liew C-W (2013) Dielectric and FTIR studies on blending of [xPMMA–(1x)PVC] with LiTFSI. Measurement 46:1650–1656

    Article  Google Scholar 

  10. Kodama M, Suzuki T, Tanaka H, Okishiro K, Okamoto K, Nishijima G, Matsumoto A, Yamamoto A, Shimoyama JI, Kishio K (2017) High-performance dense MgB2 superconducting wire fabricated from mechanically milled powder. Supercond Sci Technol 30:044006

    Article  Google Scholar 

  11. Bartolomei M, Carmona-Novillo E, Giorgi G (2015) First principles investigation of hydrogen physical adsorption on graphynes' layers. Carbon 95:1076–1081

    Article  CAS  Google Scholar 

  12. Rodríguez-Cantano R, Pérez de Tudela R, Bartolomei M, Hernández MI, Campos-Martínez J et al (2016) Examination of the Feynman–Hibbs approach in the study of NeN-Coronene clusters at low temperatures. J Phys Chem A 20:5370–5379

    Article  Google Scholar 

  13. Rohini K, Sylvinson DMR, Swathi RS (2015) Intercalation of HF, H2O, and NH3 clusters within the bilayers of Graphene and Graphene oxide: predictions from Coronene-based model systems. J Phys Chem A 119:10935–10945

    Article  CAS  Google Scholar 

  14. Ferre-Vilaplana A (2005) Numerical treatment discussion and ab initio computational investigation of physisorption of molecular hydrogen on graphene. J Chem Phys 122:104709

    Article  CAS  Google Scholar 

  15. Fukuda R, Ehara M (2013) Theoretical study on the excited electronic states of coronene and its π-extended molecules using the symmetry-adapted cluster-configuration interaction method. Bull Chem Soc Jpn 86:445–451

    Article  CAS  Google Scholar 

  16. Pakma O, Çavdar Ş, Koralay H, Tuğluoğlu N, Yüksel OF (2017) Improvement of diode parameters in Al/n-Si Schottky diodes with Coronene interlayer using variation of the illumination intensity. Physica B 527:1–6

    Article  CAS  Google Scholar 

  17. Zhang RF, Zheng HP, Shen JC (1999) Blue light-emitting diodes based on coronene-doped polymers. Synth Met 105:49–53

    Article  CAS  Google Scholar 

  18. Tuğluoğlu N, Yakuphanoğlu F, Karadeniz S (2007) Determination of the interface state density of the in/p-Si Schottky diode by conductance and capacitance–frequency characteristics. Physica B 393:56–60

    Article  Google Scholar 

  19. Tuğluoğlu N, Yüksel OF, Karadeniz S, Şafak H (2013) Frequency dependent interface state properties of a Schottky device based on perylene-monoimide deposited on n-type silicon by spin coating technique. Mater Sci Semicond Process 16:786–791

    Article  Google Scholar 

  20. Yüksel OF, Tuğluoğlu N, Şafak H, Kuş M (2013) The modification of Schottky barrier height of au/p-Si Schottky devices by perylene-diimide. J Appl Phys 113:044507

    Article  Google Scholar 

  21. Karataş Ş (2020) On comparison of the main electrical properties of Cr/n-type Si and re/n-type Si metal semiconductor structures. J Mater Electron Device 5:25–28

    Google Scholar 

  22. Selçuk AB, Tuğluoğlu N, Karadeniz S, Ocak SB (2007) Analysis of frequency-dependent in/SiO2/P-Si series resistance and interface states of (MIS) structures. Phys B Condens Matter 400:149–154

    Article  Google Scholar 

  23. Karteri İ, Özerli H, Bekerci A, Karataş Ş (2020) Analysis of current-voltage characteristics of Zn/p-Si (100) Schottky contacts in the temperature range of 290-390 K. J Mater Electron Device 1:22–26

    Google Scholar 

  24. Sze SM (1981) Physics of Semiconductor Devices2nd edn. Wiley, New York

    Google Scholar 

  25. Afandiyeva IM, Bülbül MM, Altındal Ş, Bengi S (2012) Frequency dependent dielectric properties and electrical conductivity of platinum silicide/Si contact structures with diffusion barrier. Microelectron Eng 93:50–55

    Article  CAS  Google Scholar 

  26. Popescu M, Bunget I (1984) Physics of solid dielectrics. Elsevier, Amsterdam

    Google Scholar 

  27. Daniel VV (1967) Dielectric relaxation. Academic, London

    Google Scholar 

  28. Kaya A, Vural Ö, Tecimer H, Demirezen S, Altındal Ş (2014) Frequency and voltage dependence of dielectric properties and electric modulus in au/PVC + TCNQ/p-Si structure at room temperature. Curr Appl Phys 14:322–330

    Article  Google Scholar 

  29. Padma R, Sreenu K, Reddy VR (2017) Electrical and frequency dependence characteristics of Ti/polyethylene oxide (PEO)/p-type InP organic-inorganic Schottky junction. J Alloys Compd 695:2587–2596

    Article  CAS  Google Scholar 

  30. Sharma M, Tripathi SK (2016) Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes. Mater Sci Semicond Process 41:155–161

    Article  CAS  Google Scholar 

  31. Coşkun B (2019) Capacitance and dielectric properties of Mn doped CdO Photodetectors. J Mater Electron Device 1:65–71

    Google Scholar 

  32. El-Nahass MM, Atta AA, El-Zaidia EFM, Farag AAM, Ammar AH (2014) Electrical conductivity and dielectric measurements of CoMTPP. Mater Chem Phys 143:490–494

    Article  CAS  Google Scholar 

  33. Srivastava SL, Dhar R (1991) Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy. Ind J Pure Appl Phys 29:745–750

    CAS  Google Scholar 

  34. Jonscher AK (1977) The ‘universal’ dielectric response. Nature (London) 267:673–679

    Article  CAS  Google Scholar 

  35. Srivastava SL, Dhar R (1996) Effect of γ-irradiation on liquid crystalline properties of cholesteryl pelargonate (nonanoate). Radiat Phys Chem 47:287–293

    Article  CAS  Google Scholar 

  36. Das S, Biswal AK, Parida K, Choudhary RNP, Roy A (2018) Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting. Appl Surf Sci 428:356–363

    Article  CAS  Google Scholar 

  37. Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  38. Attia AA, Soliman HS, Saadeldin MM, Sawaby K (2015) AC electrical conductivity and dielectric studies of bulk p-quaterphenyl. Synth Met 205:139–144

    Article  CAS  Google Scholar 

  39. Shehata MM, Abdel-Hamed MO, Abdelhady K (2018) Structural and dielectric properties of au/perylene-66/p-Si/Al hybrid heterojunction diode. Vacuum 151:96–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BAP office of Giresun University with the project number FEN-BAP-A-200515-65. The authors acknowledge to Prof. Dr. A. Turut (İstanbul Medeniyet University) for a technical supporting and reading of the manuscript.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Funding

This work was supported by the BAP office of Giresun University with the project number FEN-BAP-A-200515-65.

Author information

Authors and Affiliations

Authors

Contributions

Ümmühan Akın: Investigation, Formal analysis, Data curation, Writing - original draft.

Ömer Faruk Yüksel: Methodology, Validation, Visualization.

Nihat Tuğluoğlu: Supervision, Conceptualization, Writing – review & editing.

Corresponding author

Correspondence to Nihat Tuğluoğlu.

Ethics declarations

Compliance with Ethical Standards

We state that we comply with ethical standards.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author Information

Notes. The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akın, Ü., Yüksel, Ö.F. & Tuğluoğlu, N. Dielectric Properties of Coronene Film Deposited onto Silicon Substrate by Spin Coating for Optoelectronic Applications. Silicon 14, 2201–2209 (2022). https://doi.org/10.1007/s12633-021-01017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01017-3

Keywords

Navigation