Skip to main content
Log in

Annealing Temperature Effect on Bismuth Induced Crystallization of Hydrogenated Amorphous Silicon Thin Films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, we emphasis on the Bismuth induced crystallization of hydrogenated amorphous silicon (a-Si) thin films. 50 nm of bismuth thin films are deposited by vapor deposition on Silicon substrates. Then, bismuth covered Si substrates are coated with 100 nm thin film of a-Si: H elaborated at fixed growth conditions by plasma enhanced chemical vapor deposition. Annealing experiments were performed by IR thermal processing under N2 atmosphere at temperature ranging from 300 to 500 °C. The effect of annealing temperature on Bismuth induced crystallization of amorphous silicon has been evaluated in terms of crystalline modes and fractions, preferential orientations, average surface roughness and atom distributions. Using X-ray diffraction, atomic force and scanning electron microcopies as well as Raman spectroscopy, the correlation between crystalline fraction and the electrical conductivity as well as X-ray photoelectron spectrometry has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR, Sol J (2008) New processes for the production of solar-grade polycrystalline silicon: A review. Energy MaterSol Cells 92:418–424

    Article  CAS  Google Scholar 

  2. Fathi M, Mefoued A, Messaoud A, Boukennous Y (2008). J Phys Proced 2:751–757

    Article  Google Scholar 

  3. Steeman R, Yong J, Mjøs Ø, Song A (2012) Integrating the Value Chain: The Impact of Silicon Quality on Cell Performance. Energy Procedia 15:20–29

    Article  CAS  Google Scholar 

  4. Long K, Kattamis AZ, Cheng I-C, Gleskova H, Wagner S, Sturm JC (2006). J IEEE Electron Dev Lett 27:113

    Google Scholar 

  5. Saha A, Zhang H, Sun W, Tao M (2015). J Solid State Sci Technol 4:189

    Article  Google Scholar 

  6. Spinella C, Lombardo S, Priolo F (1998) Crystal grain nucleation in amorphous silicon. J Appl Phys 84:5383–5414

    Article  CAS  Google Scholar 

  7. van der Wilt PC, Turk BA, Limanov AB, Chitu AM, Im JS (2006). J Proceedings of the SPIE 6106:61060B

    Article  Google Scholar 

  8. Knaepen W, Detavernier C, Van Meirhaeghe RL, Jordan Sweet J, Lavoie C (2008). J Thin Solid Films 516:4946

    Article  CAS  Google Scholar 

  9. Hegde S, Prabhu KN (2008). J. Materials Science 43:3027

    Article  Google Scholar 

  10. Yoshitake M, Nemšák S, Skála T, Tsud N, Matolín V, Prince KC (2018) 442, 169

  11. Schneider J, Schneider A, Sarikov A, Klein J, Muske M, Gall S, Fuhs W (2006) Aluminum-induced crystallization: Nucleation and growth process. J Non-Cryst Solids 352:972–975

    Article  CAS  Google Scholar 

  12. Furuta M, Uraoka Y, Fuyuki T (2003). Jpn J Appl Phys 42:7A

    Article  Google Scholar 

  13. Olesinski RW, Abbaschian GJ (1985). J Bull Alloy Phase Diagrams 6:359–361

    Article  CAS  Google Scholar 

  14. Missana T, Adonso CN (1996). J Appl Phys 69:2039

    CAS  Google Scholar 

  15. Wilson N, Petford-Long AK, Doole RC (1998) The role of size effects on the crystallization of amorphous Ge in contact with Bi nanocrystals. J Appl Phys 84:5283–5290

    Article  CAS  Google Scholar 

  16. Ma F, Xu KW, Fan DW (2006) Strain energy anisotropy in germanium and other diamond-cubic polycrystalline films. J. Thin Solid Films. 500:164–168

    Article  CAS  Google Scholar 

  17. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M (2004) Hideo Hosono. Nature International journal of science 432:488–492

    CAS  Google Scholar 

  18. Hotový I, Huran J, McPhail DS (1998). Czechoslov J Phys 51:157

    Google Scholar 

  19. Binning G, Quate CF, Gerber C (1986) Atomic Force Microscope. J Phys Rev Lett 56:930–933

    Article  Google Scholar 

  20. Sahay PP, Nath RK, Sens J (2008) Al-doped ZnO thin films as methanol sensors. Actuators B: Chem 134(2):654–659

    Article  CAS  Google Scholar 

  21. Wang XX, Zhang JG, Ding L, Cheng BW, Ge WK, Yu JZ, Wang QM (2005) Origin and evolution of photoluminescence from Si nanocrystals embedded in aSiO2matrix. J Physical Review B 72:195313

    Article  Google Scholar 

  22. Wang T, Yan H, Zhang M, Song X, Pan Q, He T, Hu Z, Jia H, Mai Y (2013) Polycrystalline silicon thin films by aluminum induced crystallization of amorphous silicon. J Applied Surface Science 264:11–16

    Article  CAS  Google Scholar 

  23. Sarikov A, Schneider J, Muske M, Gal S, Fuhs W (2006). J. non-Crystalline Solids 352:980–983

    Article  CAS  Google Scholar 

  24. Veprek S, Sarott FA, Iqbal Z (1987) Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon. J Phys Rev B 36:3344–3350

    Article  CAS  Google Scholar 

  25. Yue G, Lorentzen JD, Lin J, Han D, Wang Q (1999) Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon. J Appl Phys Lett 75:492–494

    Article  CAS  Google Scholar 

  26. He Y, Yin C, Cheng G, Wang L, Liu X, Hu GY (1994) The structure and properties of nanosize crystalline silicon films. J Appl Phys 75:797–803

    Article  CAS  Google Scholar 

  27. Shim JH, Im S, Cho NH (2004). J. Appl. Surf. Sci. 234:268

    Article  CAS  Google Scholar 

  28. Nast O, Brehme S, Neuhaus DH, Wenham SR (1999) Polycrystalline silicon thin films on glass by aluminum-induced crystallization. J IEEE Trans Electron Devices 46:2062–2068

    Article  CAS  Google Scholar 

  29. P. Hashemi, J. Derakhshandeh, Shams Mohajerzadeh, Shams Mohajerzadeh, A. Tonita, J. Vacuum Science & Technology A Vacuum Surfaces and Films 22, 966 (2004)

  30. Şahina M, Şensoyb T, Çadırlıc E, J. Materials research (2018) 2018; 21(2): e20170901

  31. Bhaskaran M, Sriram S, Perova TS, Ermakov V, Thorogood GJ, Short KT, Holland AS (2009). J Micron 40:93

    Google Scholar 

  32. Freyman C, Zhao B, Chung Y-W (2007). J Superlubricity 13:310

    Google Scholar 

  33. Gordon I, Carnel L, Van Gestel D, Beaucarne G, Poortmans J (2007). J Prog Photovoltaics Res Appl 15:586

    Google Scholar 

  34. Gope J, Kumar S, Parashar A, Dayal S, Rauthan CMS, Srivastava PC (2012). J Int Scholarly Res Notices 2012:9

    Google Scholar 

  35. Moreau N et al (2011) Chemical reactivity of plasma polymerized allylamine (PPAA) thin films on au and Si: study of the thickness influence and aging of the films. Surf Coatings Technol 205(SUPPL. 2):462–465

    Article  Google Scholar 

  36. Post P, Wurlitzer L, Maus-Friedrichs W, Weber A (2018) Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings. Nanomaterials 8(7):530

    Article  Google Scholar 

  37. Wang X, Zhou J, Zhao S, Chen X, Yu Y (2018) Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO 4 /carbon sphere nanocomposites. Appl Surf Sci 453:394–404

    Article  CAS  Google Scholar 

  38. Liu ZQ et al (2012) Facile synthesis of large-area hierarchical bismuth molybdate nanowires for supercapacitor applications. J Electrochem Soc 159(10):582–586

    Article  Google Scholar 

  39. Hang Q, Zhu X, Zhu J, Liu Z (2012) Sillenite-type bismuth ferric nanocrystals: microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic properties. Proced Eng 27(2011):616–624

    Article  CAS  Google Scholar 

  40. Abro DMK, Dablé P, Cortez-Salazar F, Amstutz V, Girault H (2016) Characterization of surface state of inert particles: case of Si and SiC. J Miner Mater Charact Eng 04(01):62–72

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Availability of Data and Material

Yes

Author information

Authors and Affiliations

Authors

Contributions

Meriem Zouini, Rachid Ouertani, Mosbah Amlouk, Wissem Dimassi.

Corresponding author

Correspondence to Meriem Zouini.

Ethics declarations

Yes

Conflict of Interest

No

Consent to Participate

Yes

Consent for Publication

Yes

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouini, M., Ouertani, R., Amlouk, M. et al. Annealing Temperature Effect on Bismuth Induced Crystallization of Hydrogenated Amorphous Silicon Thin Films. Silicon 14, 2115–2125 (2022). https://doi.org/10.1007/s12633-021-01005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01005-7

Keywords

Navigation