Skip to main content
Log in

Modelling and Simulation of Reduced Height Strip Type Nanophotonic Waveguide Using Si3N4 as Cladding Material for Filter Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The nanophotonic waveguide is gaining high popularity, because its significance is not only limited to the optical interconnects, but also it has been widely accepted for the sensor, filter, and other applications. The standard height of SOI-based nanophotonic waveguide is around 220 nm, which has already been explored extensively. However, some researchers have recently focused the attention on the reduced height waveguides (of 100 nm). Moreover, the photonic waveguides with the reduced height are suffering from high dispersion phenomena. To overcome this problem, the over-cladding technique, using silicon nitride (Si3N4) material, has been opted in the current work that improves the dispersion characteristics and other waveguide parameters. From the analysis, it has been observed that without the over-cladding layer, the dispersion is around −8000 ps/nm-km. Moreover, utilizing the over-cladding layer of thicknesses 200 nm and 100 nm, the dispersion values have been reduced respectively to around −3300 ps/nm-km and − 2000 ps/nm-km, with their respective strip widths of 500 nm and 800 nm, at the operating wavelength of 1.55 μm. Further, the current work can be extended for the design of optical filters and other related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

I reused existing data.

References

  1. Marchetti R, Vitali V, Lacava C, Cristiani I, Giuliani G, Muato V, Fournier M, Abrate S, Gaudino R, Temporiti E, Carroll L, Minzioni P (2017) Low-loss micro-resonator filters fabricated in silicon by CMOS-compatible lithographic techniques: design and characterization. MDPI Appl Sci 7(2):174–185

    Article  Google Scholar 

  2. Romero-García S, Merget F, Zhong F, Finkelstein H, Witzens J (2013) Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Opt Express 21:14036–14046

    Article  Google Scholar 

  3. Benedikovic D, Berciano M, Ramos CA, Roux XL, Cassan E, Morini DM, Vivien L (2017) Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near and mid-IR wavelengths. Opt Express 25:19468–19478

    Article  CAS  Google Scholar 

  4. Espinola RL, Dadap JI, Osgood RM, McNab SJ, Vlasov YA (2005) C-band wavelength conversion in silicon photonic wire waveguides. Opt Express 13:4341–4349

    Article  CAS  Google Scholar 

  5. Hsieh I, Chen X, Dadap JI, Panoiu NC, Osgood RM, McNab SJ, Vlasov YA (2007) Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wire. Opt Express 15(3):1135–1146

    Article  Google Scholar 

  6. Ciret C, Leo F, Kuyken B, Roelkens G, Gorza SP (2016) Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide. Opt Express 24(1):114–124

    Article  CAS  Google Scholar 

  7. Lacava C, Marchetti R, Vitali V, Cristiani I, Giuliani G, Fournier M, Bernabe S, Minzioni P (2016) Reduced nonlinearities in 100-nm high SOI waveguides. Optical Interconnects XVI, 9753–975313

  8. Marchetti R, Vitali V, Lacava C, Cristiani I, Charbonnier B, Muffato V, Fournier M, Minzioni P (2017) Group-velocity dispersion in SOI-based channel waveguides with reduced-height. Opt Express 25:9761–9767

    Article  CAS  Google Scholar 

  9. Payne FP, Lacey JPR (1994) A theoretical analysis of scattering loss from planar optical waveguide. Opt Quant Electron 26(10):977–986

    Article  CAS  Google Scholar 

  10. Tsang HK, Wong CS, Liang TK, Day IE, Roberts SW, Harpin A, Drake J, Asghari M (2002) Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl Phys Lett 80(3):416–418

    Article  CAS  Google Scholar 

  11. Barwicz T, Popovic MA, Gan F, Dahlem MS, Holzwarth CW, Rakich PT, Ippen EP, Kartner FX, Smith HI (2008) Reconfigurable silicon photonic circuits for telecommunication applications. Proc.SPIE 6872, Laser Resonators and Beam Control X, 68720Z

  12. Barwicz T, Haus HA (2005) Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J Lightwave Technol 23(9):2719–2732

    Article  Google Scholar 

  13. Popovic MA, Barwicz T, Dahlem MS, Gan F, Holzwarth CW, Rakich PT, Smith HI (2005) Ippen EP, and Kartner FX. Tunable, fourth-order silicon microring-resonator add-drop filters. Proc. 33rd Europian conference optical communication X. Berlin, Germany, pp 1–2

  14. Dahlem MS, Holzwarth CW, Khilo A, Kartner FX, Smith HI, Ippen EP (2005) Reconfigurable multi-channel second-order silicon microring-resonator filter banks for on-chip WDM systems. Opt Express X 19(1):306–316

    Article  Google Scholar 

  15. Karim MR, Ahmad H, Ghosh S, Rahman BMA (2018) Design of dispersion-engineered As2Se3 channel waveguide for mid-infrared region super continuum generation editors-pick. J Appl Phys 123:213101

    Article  Google Scholar 

  16. Li J, Xu K, Du J (2017) Ultrabroadband and flattened dispersion in aluminum nitride slot waveguides. IEEE Photonics J 9(4):1–8

    Google Scholar 

  17. Mishra D, Sonkar RK (2020) Mode, dispersion, and loss analysis of a graded-index germanium-doped silicon buried strip waveguide. Opt Eng 59(1):016118

    Article  CAS  Google Scholar 

  18. Boggio JMC, Bodenmuller D, Fremberg T, Haynes R, Roth MM, Eiserman R, Lisker M, Zimmermann L, Bohm M (2014) Dispersion engineered silicon nitride waveguides by geometrical and refractive index optimization. J OSA B 31(11):2846–2857

    CAS  Google Scholar 

  19. Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructure. Opt Lett 29(11):1209–1211

    Article  Google Scholar 

  20. Zhang L, Yue Y, Beausoleil RG, Willner AE (2010) Flattened dispersion in silicon slot waveguides. Opt Express 18(19):20529–20534

    Article  CAS  Google Scholar 

  21. Liu X, Green WMJ, Chen X, Hsieh I, Dadap JI, Vlasov YA, Osgood RM (2008) Conformal dielectric over layers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires. Opt Lett 33(24):2889–2891

    Article  CAS  Google Scholar 

  22. Guo Y, Jafari Z, Agarwal AM, Kimerling LC, Li G, Michel J, Zhang L (2016) Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt Lett 41(21):4939–4942

    Article  CAS  Google Scholar 

  23. Liang H, He Y, Luo R, Lin Q (2016) Ultra-broadband dispersion engineering of nanophotonic waveguides. Opt Express 24(26):29444–29451

    Article  CAS  Google Scholar 

  24. Huang Z, Huang Q, Wang Y, Xia J (2018) Rectangular-cladding silicon slot waveguide with improved nonlinear performance. Opt Eng 57(4):046108

    Article  Google Scholar 

  25. Alasaarela T, Korn D, Alloatti L, Saynatjoki A, Tervonen A, Palmer R, Leuthold J, Freude W, Honkanen S (2011) Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. Opt Express 19:11529–11538

    Article  CAS  Google Scholar 

  26. Munoz P, Mico G, Bru LA, Pastor D, Pérez D, Doménech JD, Fernández J, Banos R, Gargallo B, Alemany R, Sanchez AM, Cirera JM, Mas R, Domínguez C (2017) Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 17:2088

    Article  Google Scholar 

  27. Soref R (2010) Mid-infrared photonics in silicon and germanium. Nat Photonics 4:495–497

    Article  CAS  Google Scholar 

  28. Minzioni P, Nava G, Cristiani I, Yan W, Degiorgio V (2013) Wide-band single-shot measurement of refractive indices and birefringence of transparent materials. Opt Laser Technol 50:71–77

    Article  CAS  Google Scholar 

  29. Yin L, Lin Q, Agrawal GP (2007) Soliton fission and supercontinuum generation in silicon waveguides. Opt Lett 32(4):391–393

    Article  Google Scholar 

  30. Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil RG, Willner AE (2012) Silicon waveguide with four zero dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt Express 20(2):1685–1690

    Article  CAS  Google Scholar 

  31. Jafari Z, Emami F (2014) A silicon waveguide for tailoring dispersion of transverse electric and magnetic modes. IEEE Photon Technol Lett 26(9):885–888

    Article  CAS  Google Scholar 

  32. Liu L, Huang G, Wang RN, He J, Raja AS, Liu T, Engelsen NJ, Kippenberg TJ (2020) High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. arXiv 2005,13949

  33. Ding X, Feng S (2020) Dispersion engineering in asymmetric dual-width Si3N4 waveguide with high confinement based on super-mode theory. Opt Commun 464:125474

    Article  CAS  Google Scholar 

  34. Butt MA, Khonina SN, Kazanskiy NL (2020) Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sensors J 20(3):1355–1362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge, National Institute of Technology Patna, and Science and Engineering Research Board, Department of Science and Technology, Government of India for providing COMSOL Multiphysics simulation software, used in the current simulation work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors are equally contributed in the manuscript.

Corresponding author

Correspondence to Veer Chandra.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent for Publication

Not Applicable.

Consent to Participate

Not Applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, V., Ranjan, R. Modelling and Simulation of Reduced Height Strip Type Nanophotonic Waveguide Using Si3N4 as Cladding Material for Filter Applications. Silicon 14, 2079–2087 (2022). https://doi.org/10.1007/s12633-021-00997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-00997-6

Keywords

Navigation