Skip to main content

Decontamination of Anthraquinone Dyes Polluted Water Using Bioinspired Silica as a Sustainable Sorbent

Abstract

The increased release of harmful dyes in water, along with the continuous reduction of the world’s freshwater supplies has placed the textile industry under greater pressure to safely and effectively treat wastewater effluents. Resistance of reactive dyes to breakdown naturally has highlighted the need for specialised removal methods. The growing need for low-cost, efficient sorbents has led to the exploration of bioinspired silicas (BIS) due to their green synthesis, proven scalability, and versatility for chemical functionalisation required for dye scavenging. Through a systematic approach, the removal of Reactive Blue 19 from water was studied using a range of BIS, and was compared to removal using a commercial sorbent. While 0% removal was denoted for the commercial sorbent, BIS showed up to 94% removal. The results obtained from a kinetic study suggested a pseudo-second-order reaction, indicating a chemisorption process via electrostatic interactions. Examination of the effects of various adsorption conditions (temperature, pH, sorbent and dye concentrations) using isotherm models (Langmuir and Freundlich) indicated that adsorption was of both chemical and physical nature. Examination of the adsorption mechanism suggest that dye adsorption on BIS was spontaneous. BIS showed higher adsorption capacity (334 mg g−1) compared to literature examples, with rapid adsorption under acidic conditions, excellent thermal stability and good reuse potential. These findings highlight the potential of BIS as a sustainable, efficient and low-cost sorbent that could be brought forward for future implementation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bharathi K, Ramesh S (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3:773–790

    Article  Google Scholar 

  2. 2.

    Sostar-Turk S, Simonic M, Petrinic I (2005) Wastewater treatment after reactive printing, dyes and pigments. Dyes Pigments 64(2):147–152

    CAS  Article  Google Scholar 

  3. 3.

    Elwakeel K, El-Binday A, Ismail A, Morshidy A (2016) Sorptive removal of Remazol brilliant blue R from aqueous solution by Diethylenetriamine functionalized magnetic macro-reticular hybrid material. RSC Adv 6(27):22395–22410

    CAS  Article  Google Scholar 

  4. 4.

    Tebbutt T (1998) Principles of water quality control5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  5. 5.

    Salleh M, Mahmoud D, Karim W, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13

    CAS  Article  Google Scholar 

  6. 6.

    Monshef Khoshhesab Z, Ahmadi M (2015) Removal of reactive blue 19 from aqueous solutions using NiO nanoparticles: equilibrium and kinetic studies. Desalin Water Treat 57(42):20037–20048

    Article  CAS  Google Scholar 

  7. 7.

    Assadi A, Nateghi R, Reza Bonyadinejad G, Mehdi Amin M (2012) Decolorization of direct poly Azo dye with Nanophotocatalytic UV/NiO process. Int J Environ Health Eng 1(3):1–5

    Google Scholar 

  8. 8.

    Gomez J, Galan J, Rodriguez A, Walker G (2014) Dye Adsoprtion onto Mesoporous materials: pH influence, kinetics ad equilibrium in buffered and saline media. J Environ Manag 146:355–361

    CAS  Article  Google Scholar 

  9. 9.

    Banat I, Nigam P, Singh D, Marchant R (1996) Microbial Decolourization of textile dye containing effluents: a review. Bioresour Technol 58(217–227):217–227

    CAS  Article  Google Scholar 

  10. 10.

    Lee Y, Matthews R, Pavlostathis S (2005) Biological decolourization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ Res 78(2):156–159

    Article  CAS  Google Scholar 

  11. 11.

    Routoula E, Patwardhan SV (2020) Degradation of Anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol 54(2):647–664

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Aljeboree A, Alshirifi A, Alkaim A (2014) Kinetics and equilibrium study for the adsorption of textile dyes on coconut Shell activated carbon. Arab J Chem 10(2):S3381–S3393

    Google Scholar 

  13. 13.

    Qu J (2008) Research Progress of Nove adsorption processes in water purification: a review. J Environ Sci 20:1–13

    CAS  Article  Google Scholar 

  14. 14.

    Alrozi R, Anuar N, Senusi F, Kamaruddin M (2016) Enhancement of Remazol brilliant blue R adsorption capacity by using modified Clinoptilolite. Iranica J Energy Environ 7(2):129–136

    CAS  Google Scholar 

  15. 15.

    Wang S, Li H, Xu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295(1):71–78

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Bhatnagar A, Minocha A (2006) Conventional and non-conventional adsorbents for removal of pollutants from water - a review. Indian J Chem Technol 13:203–217

    CAS  Google Scholar 

  17. 17.

    Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Yang R (2003) Adsorbents: fundamentals and applications1st edn. Wiley, Hoboken, pp 131–132

    Book  Google Scholar 

  19. 19.

    Diagboya PNE, Dikio ED (2018) Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous Mesoporous Mater 266:252–267. https://doi.org/10.1016/j.micromeso.2018.03.008

    CAS  Article  Google Scholar 

  20. 20.

    Gibson LT (2014) Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution. Chem Soc Rev 43(15):5173–5182. https://doi.org/10.1039/c3cs60095e

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Walcarius A, Mercier L (2010) Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J Mater Chem 20(22):4478–4511. https://doi.org/10.1039/B924316J

    CAS  Article  Google Scholar 

  22. 22.

    Patwardhan SV, Manning JRH, Chiacchia M (2018) Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges. Curr Opin Green Sust 12:110–116. https://doi.org/10.1016/j.cogsc.2018.08.004

    Article  Google Scholar 

  23. 23.

    Patwardhan SV, Staniland SS (2019) Green Nanomaterials. From bioinspired synthesis to sustainable manufacturing of inorganic nanomaterials. IOP Publishing https://doi.org/10.1088/978-0-7503-1221-9

  24. 24.

    Drummond C, McCann R, Patwardhan SV (2014) A feasibility study of the biologically inspired green manufacturing of precipitated silica. Chem Eng J 244:483–492. https://doi.org/10.1016/j.cej.2014.01.071

    CAS  Article  Google Scholar 

  25. 25.

    Forsyth C, Patwardhan SV (2013) Controlling performance of lipase immobilised on bioinspired silica. J Mater Chem B 1(8):1164–1174. https://doi.org/10.1039/c2tb00462c

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Davidson S, Lamprou DA, Urquhart AJ, Grant MH, Patwardhan SV (2016) Bioinspired silica offers a novel, green, and biocompatible alternative to traditional drug delivery systems. Acs Biomater Sci Eng 2(9):1493–1503. https://doi.org/10.1021/acsbiomaterials.6b00224

    CAS  Article  Google Scholar 

  27. 27.

    Ewlad-Ahmed AM, Morris MA, Patwardhan SV, Gibson LT (2012) Removal of formaldehyde from air using functionalized silica supports. Environ Sci Technol 46(24):13354–13360. https://doi.org/10.1021/es303886q

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Alotaibi KM, Shiels L, Lacaze L, Peshkur TA, Anderson P, Machala L, Critchley K, Patwardhan SV, Gibson LT (2017) Iron supported on bioinspired green silica for water remediation. Chem Sci 8(1):567–576. https://doi.org/10.1039/C6SC02937J

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Arkas M, Tsiourvas D (2009) Organic/inorganic hybrid nanospheres based on hyperbranched poly (ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water. J Hazard Mater 170(1):35–42. https://doi.org/10.1016/j.jhazmat.2009.05.031

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Manning JRH, Yip TWS, Centi A, Jorge M, Patwardhan SV (2017) An eco-friendly, tunable and scalable method for producing porous functional Nanomaterials designed using molecular interactions. ChemSusChem 10(8):1683–1691. https://doi.org/10.1002/cssc.201700027

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Manning JRH, Routoula E, Patwardhan SV (2018) Preparation of functional silica using a bioinspired method. J Visual Exp 138:e57730. https://doi.org/10.3791/57730

  32. 32.

    Calvete T, Lima E, Cardoso N, Dias S, Pavan F (2009) Application of carbon adsorbents prepared from the Brazilian pine-fruit-Shell for the removal of Procion red MX 3B from aqueous solution - kinetic, Equilibirum and thermodynamic studies. Chem Eng J 155(3):627–636

    CAS  Article  Google Scholar 

  33. 33.

    Feng Y, Zhou H, Liu G, Qiao J, Wang J, Lu H, Yang L, Wu Y (2012) Methylene blue adsorption onto swede rape straw (Brassica Napus L) modified by tartaric acid: equilibrium, kinetic and adsorption mechanism. Bioresour Technol 125:138–144

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  35. 35.

    Ho Y, Mckay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124

    CAS  Article  Google Scholar 

  36. 36.

    Robati D (2013) Pseudo-second order kinetic equations for Modelling adsorption Systems for Removal of Lead ions using multi-walled carbon nanotubes. J Nanostruct Chem 3(1):55

    Article  Google Scholar 

  37. 37.

    Weber Jr WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Google Scholar 

  38. 38.

    Vadivelan V, Kumar K (2005) Equilibrium, kinetics, mechanisms and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286(1):90–100

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Fierro V, Torne-Fernandez V, Montane D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 111:276–284

    CAS  Article  Google Scholar 

  40. 40.

    Santhi M, Kumar P (2013) Removal of basic dye Rhodamine-B by activated carbon-MNO2-Nanocomposite and activated carbon- a comparative study. Int J Sci Res 6(4):1968–1971

    Google Scholar 

  41. 41.

    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, Mica and Platinum. J Am Chem Soc 40(9):1361–1403

    CAS  Article  Google Scholar 

  42. 42.

    Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  43. 43.

    Bhatt P, Vyas R, Pandit P, Sharma M (2013) Adsorption of reactive blue and direct red dyes on powdered activated carbon (PAC) - equilibrium, kinetics and thermodynamic studies. Nat Environ Pollut Technol 12(3):397–405

  44. 44.

    Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502

  45. 45.

    El-Bindary AA, Abd El-Kawi MA, Hafez AM, Rashed IGA, Aboelnaga EE (2016) Removal of reactive blue 19 from aqueous solution using rice straw fly ash. J Mater Environ Sci 7(3):1023–1036

  46. 46.

    Ciobanu G, Barna S, Harja M (2016) Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent. Arch Environ Protect 42:3–11

    Article  Google Scholar 

  47. 47.

    Sayed-Ahmed S, Khalil L, El-Nabaraway T (2012) Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel. Carbon Lett 13:212–220

    Article  Google Scholar 

  48. 48.

    Inal M, Erduran N (2015) Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads. Polym Bull 72:1735–1752

    CAS  Article  Google Scholar 

  49. 49.

    Banaei A, Ebrahimi S, Vojoudi H, Karimi S, Badiei A, Pourbasheer E (2017) Adsorption equilibrium and thermodynamics of anionic reactive dyes from aqueous solutions by using a new modified silica gel with 2,2 '-(pentane-1,5-diylbis (oxy))dibenzaldehyde. Chem Eng Res Des 123:50–62. https://doi.org/10.1016/j.cherd.2017.04.032

    CAS  Article  Google Scholar 

  50. 50.

    Asgher M, Bhatti HN (2012) Removal of reactive blue 19 and reactive blue 49 textile dyes by citrus waste biomass from aqueous solution: equilibrium and kinetic study. Can J Chem Eng 90(2):412–419. https://doi.org/10.1002/cjce.20531

    CAS  Article  Google Scholar 

  51. 51.

    Ergene A, Ada K, Tan S, Katircioglu H (2009) Removal of Remazol brilliant blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies. Desalination 249(3):1308–1314. https://doi.org/10.1016/j.desal.2009.06.027

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Chemical and Biological Engineering at the University of Sheffield for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siddharth V. Patwardhan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 35.0 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, H., Routoula, E. & Patwardhan, S.V. Decontamination of Anthraquinone Dyes Polluted Water Using Bioinspired Silica as a Sustainable Sorbent. Silicon (2021). https://doi.org/10.1007/s12633-020-00851-1

Download citation

Keywords

  • Environmental engineering
  • Green nanomaterials
  • Secondary pollution