Skip to main content
Log in

Propagation of Short Pulses in Dispersion-Engineered Silicon Nanowires: Impact of Chirp Parameter

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, we investigate the propagation of short pulses in dispersion-engineered silicon nanowires via solving nonlinear Schrödinger equation (NLSE) using the split-step Fourier (SSF) method. By assuming secant-hyperbolic input pulse and including the nonlinear parameter, second- and third-order dispersion coefficients as a function of nanowire length, the impact of chirp parameter on the pulse evolution along the nanowire is simulated. The results show that the value and sign of the chirp parameter have significant impacts on the pulse evolution and specially the pulse broadening along the nanowire. Hence, the broadening factor can be reduced by adding a positive chirp to the input pulse. By choosing proper values of pulse parameters, pulse propagation can be controlled such that the minimum broadening during the propagation happens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill DJ, Cahoon JF (2017) Nanowire synthesis: from top-down to bottom-up. Material Matters 12(1):10–13

    CAS  Google Scholar 

  2. Piccione, B. E. (2012) Semiconductor nanowires: optical properties and all-optical switching

    Google Scholar 

  3. Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF, Ellenbogen JC, Lieber CM (2011) Programmable nanowire circuits for nanoprocessors. Nature 470(7333):240–244

    Article  CAS  Google Scholar 

  4. Li Z, Allen J, Allen M, Tan HH, Jagadish C, Fu L (2020) Review on III-V semiconductor single nanowire-based room temperature infrared Photodetectors. Materials 13(6):1400

    Article  CAS  Google Scholar 

  5. Sun, Y. and Rogers, J.A. eds. (2010). Semiconductor nanomaterials for flexible technologies: from photovoltaics and electronics to sensors and energy storage. William Andrew

  6. Ko M, Baek SH, Song B, Kang JW, Kim SA, Cho CH (2016) Periodically diameter-modulated semiconductor nanowires for enhanced optical absorption. Adv Mater 28(13):2504–2510

    Article  CAS  Google Scholar 

  7. Hagedorn K, Forgacs C, Collins S, Maldonado S (2010) Design considerations for nanowire heterojunctions in solar energy conversion/storage applications. J Phys Chem C 114(27):12010–12017

    Article  CAS  Google Scholar 

  8. Foley JM, Price MJ, Feldblyum JI, Maldonado S (2012) Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy Environ Sci 5(1):5203–5220

    Article  CAS  Google Scholar 

  9. Trivedi K, Yuk H, Floresca HC, Kim MJ, Hu W (2011) Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett 11(4):1412–1417

    Article  CAS  Google Scholar 

  10. O'Brien PG, Sandhel A, Wood TE, Jelle AA, Hoch LB, Perovic DD, Mims CA, Ozin GA (2014) Photomethanation of gaseous CO2 over Ru/Silicon nanowire catalysts with visible and near-infrared photons. Advanced Science 1(1):1400001

    Article  Google Scholar 

  11. Jiang Y, Tian B (2018) Inorganic semiconductor biointerfaces. Nature Reviews Materials 3(12):473–490

    Article  Google Scholar 

  12. Jiang Y, Li X, Liu B, Yi J, Fang Y, Shi F, Gao X, Sudzilovsky E, Parameswaran R, Koehler K, Nair V (2018) Rational design of silicon structures for optically controlled multiscale biointerfaces. Nature biomedical engineering 2(7):508–521

    Article  CAS  Google Scholar 

  13. Wendisch FJ, Abazari M, Mahdavi H, Rey M, Vogel N, Musso M, Diwald O, Bourret GR (2020) Morphology-graded silicon nanowire arrays via chemical etching: engineering optical properties at the Nanoscale and macroscale. ACS Appl Mater Interfaces 12(11):13140–13147

    Article  CAS  Google Scholar 

  14. Sun Y, Sun B, He J, Wang C (2019) Compositional and structural engineering of inorganic nanowires toward advanced properties and applications. InfoMat 1(4):496–524

    Article  CAS  Google Scholar 

  15. Osgood RM, Panoiu NC, Dadap JI, Liu X, Chen X, Hsieh IW, Dulkeith E, Green WMJ, Vlasov YA (2009) Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Adv Opt Photon 1(1):162–235

    Article  CAS  Google Scholar 

  16. Quan LN, Kang J, Ning CZ, Yang P (2019) Nanowires for photonics. Chem Rev 119(15):9153–9169

    Article  CAS  Google Scholar 

  17. Driscoll JB, Osgood RM, Grote RR, Dadap JI, Panoiu NC (2015) Squeezing light in wires: fundamental optical properties of Si nanowire waveguides. J Lightwave Technol 33(14):3116–3131

    Article  CAS  Google Scholar 

  18. Foster MA, Turner AC, Lipson M, Gaeta AL (2008) Nonlinear optics in photonic nanowires. Opt Express 16(2):1300–1320

    Article  Google Scholar 

  19. Hu XF, Li SJ, Wang J, Jiang ZM, Yang XJ (2020) Investigating size-dependent conductive properties on individual Si nanowires. Nanoscale Res Lett 15(1):1–12

    Article  Google Scholar 

  20. Zografopoulos DC, Beccherelli R, Kriezis EE (2012) Quasi-soliton propagation in dispersion-engineered silicon nanowires. Opt Commun 285(15):3306–3311

    Article  CAS  Google Scholar 

  21. Agrawal GP (2000) Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century (pp. 195-211). Springer, Berlin, Heidelberg

  22. Pakarzadeh H, Delirian Z (2016) Simulation of chirped pulse propagation in silicon nanowires: shape and spectrum analysis. Optics and Photonics Journal 6(08):53

    Article  CAS  Google Scholar 

  23. Pakarzadeh H, Forghani SE, Amiri IS (2019) Propagation of telecommunication pulses in photonics nanowires: a comparative physics study. Results in Physics 13:102342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Pakarzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakarzadeh, H., Delirian, Z. Propagation of Short Pulses in Dispersion-Engineered Silicon Nanowires: Impact of Chirp Parameter. Silicon 14, 1221–1225 (2022). https://doi.org/10.1007/s12633-020-00850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00850-2

Keywords

Navigation