Skip to main content

Advertisement

Log in

Effect of Si3N4 Ceramic Particulates on Mechanical, Thermal, Thermo-Mechanical and Sliding Wear Performance of AA2024 Alloy Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this investigation, hybrid AA2024 – Si3N4 (0–6 wt.% @ 2%) – SiC (2 wt.%) – graphite (2 wt.%) alloy composites have been fabricated as per design using the stir casting method. This follows evaluation of physical, mechanical, thermal, thermo-mechanical, fracture toughness, and sliding wear performance as per standards. The density and material stability of the alloy composites improves with reinforcement content while porosity and thermal conductivity show a diminishing trend. The mechanical characteristics improve considerably with reinforcement. The alloy composite having 6 wt.% Si3N4 particulates show maximum mechanical characteristics like ultimate tensile strength (212 MPa), percent elongation (13%), flexural strength (645 MPa), micro-hardness (127 HV), and impact strength (85 J). Fracture toughness was found to improve with Si3N4 particulate content and with crack length. The storage modulus and damping capacity of the alloy composites have shown an increasing trend with reinforcement content while the loss modulus shows a reverse trend. The specific wear rate and friction coefficient tend to diminish with Si3N4 particulate content under steady state conditions. The normal load significantly influences the specific wear rate of the alloy composites under the Taguchi experimental design. Worn out surface morphology analysis shows wear mechanisms like surface fatigue, ploughing, micro-cutting, three-body abrasion, etc. responsible for surface damage. EDAX spectrum shows elemental presence and mapping and XRD analysis shows the presence and distribution of various phases of alloy composites and counter-surface disc. It could be the potential material for various components like gear, piston, cylinder liner, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh J, Chauhan A (2016) Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram Int 42:56–81. https://doi.org/10.1016/j.ceramint.2015.08.150

    Article  CAS  Google Scholar 

  2. Bhaskar S, Kumar M, Patnaik A (2020) Silicon carbide ceramic particulate reinforced AA2024 alloy composite - part I: evaluation of mechanical and sliding tribology performance. Silicon 12:843–865. https://doi.org/10.1007/s12633-019-00181-x

    Article  CAS  Google Scholar 

  3. Vencl A, Bobic I, Arostegui S (2010) Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+graphite particles. J Alloys Compd 506:631–639. https://doi.org/10.1016/j.jallcom.2010.07.028

    Article  CAS  Google Scholar 

  4. Bai M, Xue Q, Ge Q (1996) Wear of 2024Al-Mo-SiC composites under lubrication. Wear 195:100–105. https://doi.org/10.1016/0043-1648(95)06808-2

    Article  CAS  Google Scholar 

  5. Baradeswaran A, Elaya Perumal A (2014) Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites. Compos Part B Eng 56:464–471. https://doi.org/10.1016/j.compositesb.2013.08.013

    Article  CAS  Google Scholar 

  6. Singh H, Bhowmick H (2018) Tribological behaviour of hybrid AMMC sliding against steel and cast iron under MWCNT-oil lubrication. Tribol Int 127:509–519. https://doi.org/10.1016/j.triboint.2018.06.030

    Article  CAS  Google Scholar 

  7. Patel SK, Kuriachen B, Kumar N, Nateriya R (2018) The slurry abrasive wear behaviour and microstructural analysis of A2024-SiC-ZrSiO4 metal matrix composite. Ceram Int 44:6426–6432. https://doi.org/10.1016/j.ceramint.2018.01.037

    Article  CAS  Google Scholar 

  8. Amra M, Ranjbar K, Hosseini SA (2018) Microstructure and wear performance of Al5083/CeO2/SiC mono and hybrid surface composites fabricated by friction stir processing. Trans Nonferrous Met Soc China 28:866–878. https://doi.org/10.1016/S1003-6326(18)64720-X

    Article  CAS  Google Scholar 

  9. Mohapatra J, Nayak S, Mahapatra MM (2020) Mechanical and tribology properties of Al-4.5%cu-5%TiC metal matrix composites for light-weight structures. Int J Light Mater Manuf 3:120–126. https://doi.org/10.1016/j.ijlmm.2019.09.004

    Article  Google Scholar 

  10. Singh RK, Telang A, Das S (2020a) Microstructure, mechanical properties and two-body abrasive wear behaviour of hypereutectic Al—Si—SiC composite. Trans Nonferrous Met Soc China 30:65–75. https://doi.org/10.1016/S1003-6326(19)65180-0

    Article  CAS  Google Scholar 

  11. Abbasipour B, Niroumand B, Monir Vaghefi SM, Abedi M (2019) Tribological behavior of A356−CNT nanocomposites fabricated by various casting techniques. Trans Nonferrous Met Soc China 29:1993–2004. https://doi.org/10.1016/S1003-6326(19)65107-1

    Article  CAS  Google Scholar 

  12. Bembalge OB, Panigrahi SK (2019) Influence of SiC ceramic reinforcement size in establishing wear mechanisms and wear maps of ultrafine grained AA6063 composites. Ceram Int 45:20091–20104. https://doi.org/10.1016/j.ceramint.2019.06.274

    Article  CAS  Google Scholar 

  13. Jacob Dhas DSE, Velmurugan C, Wins KLD, BoopathiRaja KP (2019) Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites. Ceram Int 45:614–621. https://doi.org/10.1016/j.ceramint.2018.09.216

    Article  CAS  Google Scholar 

  14. Sivakumar S, Golla BR, Rajulapati KV (2019) Influence of ZrB2 hard ceramic reinforcement on mechanical and wear properties of aluminum. Ceram Int 45:7055–7070. https://doi.org/10.1016/j.ceramint.2018.12.208

    Article  CAS  Google Scholar 

  15. Hadian M, Shahrajabian H, Rafiei M (2019) Mechanical properties and microstructure of Al/(TiC+TiB2) composite fabricated by spark plasma sintering. Ceram Int 45:12088–12092. https://doi.org/10.1016/j.ceramint.2019.03.106

    Article  CAS  Google Scholar 

  16. Bisht A, Kumar V, Li LH (2018) Effect of warm rolling and annealing on the mechanical properties of aluminum composite reinforced with boron nitride nanotubes. Mater Sci Eng A 710:366–373. https://doi.org/10.1016/j.msea.2017.10.101

    Article  CAS  Google Scholar 

  17. Rofman OV, Mikhaylovskaya AV, Kotov AD (2019) Effect of thermomechanical treatment on properties of an extruded Al-3.0Cu-1.2Mg/SiCp composite. Mater Sci Eng A 739:235–243. https://doi.org/10.1016/j.msea.2018.10.053

    Article  CAS  Google Scholar 

  18. Salih OS, Ou H, Wei X, Sun W (2019) Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite. Mater Sci Eng A 742:78–88. https://doi.org/10.1016/j.msea.2018.10.116

    Article  CAS  Google Scholar 

  19. Krishnan PK, Christy JV, Arunachalam R (2019) Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: influence on microstructure and mechanical properties. J Alloys Compd 784:1047–1061. https://doi.org/10.1016/j.jallcom.2019.01.115

    Article  CAS  Google Scholar 

  20. http://www.astm.org/cgi-bin/resolver.cgi?B821. Accessed 6 Sep 2020

  21. Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites3rd edn. Delhi, New

    Google Scholar 

  22. Földvári M (2011) Handbook of thermogravimetric system of minerals and its use in geological practice: occasional papers of the geological Institute of Hungary, Hungary

  23. Mamtha TG (2012) Thermo-mechanical, fracture and erosive wear analysis of particulate filled hybrid metal alloy composites, A thesis submitted in the partial fulfillment of the requirement for the award of the degree Doctor of Philosophy, NIT Hamirpur

  24. Goswami C, Bhat IK, Bathula S, Singh T, Patnaik A (2019) Physico-mechanical and surface Wear assessment of magnesium oxide filled ceramic composites for hip implant application. Silicon 11:39–49. https://doi.org/10.1007/s12633-018-9880-6

    Article  CAS  Google Scholar 

  25. Siddhartha PA, Bhatt AD (2011) Mechanical and dry sliding wear characterization of epoxy-TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment. Mater Des 32:615–627. https://doi.org/10.1016/j.matdes.2010.08.011

    Article  CAS  Google Scholar 

  26. Kumar A, Patnaik A, Bhat IK (2019) Tribology analysis of cobalt particulate filled Al 7075 alloy for gear materials: a comparative study. Silicon 11:1295–1311. https://doi.org/10.1007/s12633-018-9920-2

    Article  CAS  Google Scholar 

  27. https://www.minitab.com/gettingstarted/Minitab17.pdf. Accessed 22 Mar 2019

  28. Janssen GJ Information on the FESEM, Radboud University Nijmegen www.sem.com/analytic/sem.htm. Accessed 6 Jan 2019

  29. Ravindran P, Manisekar K, Rathika P, Narayanasamy P (2013) Tribological properties of powder metallurgy - processed aluminium self lubricating hybrid composites with SiC additions. Mater Des 45:561–570. https://doi.org/10.1016/j.matdes.2012.09.015

    Article  CAS  Google Scholar 

  30. Sharma P, Sharma S, Khanduja D (2015) Production and some properties of Si3N4 reinforced aluminium alloy composites. J Asian Ceram Soc 3:352–359. https://doi.org/10.1016/j.jascer.2015.07.002

    Article  Google Scholar 

  31. Muralidharan N, Chockalingam K, Dinaharan I, Kalaiselvan K (2018) Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J Alloys Compd 735:2167–2174. https://doi.org/10.1016/j.jallcom.2017.11.371

    Article  CAS  Google Scholar 

  32. Huang G, Hou W, Shen Y (2018) Materials characterization evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing. Mater Charact 138:26–37. https://doi.org/10.1016/j.matchar.2018.01.053

    Article  CAS  Google Scholar 

  33. Pazhouhanfar Y, Eghbali B (2018) Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater Sci Eng A 710:172–180. https://doi.org/10.1016/j.msea.2017.10.087

    Article  CAS  Google Scholar 

  34. Rana RS, Purohit R, Soni VK, Das S (2015) Characterization of mechanical properties and microstructure of Aluminium alloy-SiC composites. Mater Today Proc 2:1149–1156. https://doi.org/10.1016/j.matpr.2015.07.026

    Article  CAS  Google Scholar 

  35. Bahrami M, Helmi N, Dehghani K, Givi MKB (2014) Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: fatigue life, impact energy, tensile strength. Mater Sci Eng A 595:173–178. https://doi.org/10.1016/j.msea.2013.11.068

    Article  CAS  Google Scholar 

  36. David Raja Selvam J, Dinaharan I, Vibin Philip S, Mashinini PM (2018) Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites. J Alloys Compd 740:529–535. https://doi.org/10.1016/j.jallcom.2018.01.016

    Article  CAS  Google Scholar 

  37. David Raja Selvam J, Robinson Smart DS, Dinaharan I (2013) Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater Des 49:28–34. https://doi.org/10.1016/j.matdes.2013.01.053

    Article  CAS  Google Scholar 

  38. Han G, Zhang W, Zhang G (2015) High-temperature mechanical properties and fracture mechanisms of Al-Si piston alloy reinforced with in situ TiB2 particles. Mater Sci Eng A 633:161–168. https://doi.org/10.1016/j.msea.2015.03.021

    Article  CAS  Google Scholar 

  39. Lee HS, Hong SH (2003) Pressure infiltration casting process and thermophysical properties of high volume fraction SiCp/Al metal matrix composites. Mater Sci Technol 19:1057–1064. https://doi.org/10.1179/026708303225004396

    Article  CAS  Google Scholar 

  40. Kawai C (2001) Effect of interfacial reaction on the thermal conductivity of Al-SiC composites with SiC dispersions. J Am Ceram Soc 84:896–898. https://doi.org/10.1111/j.1151-2916.2001.tb00764.x

    Article  CAS  Google Scholar 

  41. Ejiofor JU, Okorie BA, Reddy RG (1997) Powder processing and properties of zircon-reinforced Al-13.5Si-2.5Mg alloy composites. J Mater Eng Perform 6:326–334

    Article  CAS  Google Scholar 

  42. Sastry S, Krishna M, Uchil J (2000) Damping behaviour of alminite particulate reinforced ZA-27 alloy metal matrix composites. Proc Second Int Conf Process Mater Prop 314:268–274

    Google Scholar 

  43. Menard KP (1999) DYNAMIC MECHANICAL ANALYSIS: a practical introduction. CRC Press LLC, United States of America

    Book  Google Scholar 

  44. Elomari S, Boukhili R, Skibo MD (1995) Dynamic mechanical analysis of prestrained Al2O3/Al metal-matrix composite. J Mater Sci 30:3037–3044

    Article  CAS  Google Scholar 

  45. Milan MT, Bowen P (1992) Tensile and fracture toughness properties of SiCp reinforced Al alloys: effects of particle size, particle volume fraction, and matrix strength. J Mater Eng Perform 13:775–783

    Article  Google Scholar 

  46. Davidson DL (1993) Fatigue and fracture toughness of aluminium alloys reinforced with SiC and alumina particles. Composites 24:248–255

    Article  CAS  Google Scholar 

  47. Ravindran P, Manisekar K, Narayanasamy P (2012) Application of factorial techniques to study the wear of Al hybrid composites with graphite addition. Mater Des 39:42–54. https://doi.org/10.1016/j.matdes.2012.02.013

    Article  CAS  Google Scholar 

  48. Zhiqiang S, Di Z, Guobin L (2005) Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites. Mater Des 26:454–458. https://doi.org/10.1016/j.matdes.2004.07.026

    Article  CAS  Google Scholar 

  49. Rao RN, Das S, Mondal DP, Dixit G (2012) Mechanism of material removal during tribological behaviour of aluminium matrix (Al-Zn-mg-cu) composites. Tribol Int 53:179–184. https://doi.org/10.1016/j.triboint.2012.04.017

    Article  CAS  Google Scholar 

  50. Mazahery A, Shabani MO (2013) Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Trans Nonferrous Met Soc China 23:1905–1914. https://doi.org/10.1016/S1003-6326(13)62676-X

    Article  CAS  Google Scholar 

  51. Kumar A, Patnaik A, Bhat IK (2017) Investigation of nickel metal powder on tribological and mechanical properties of Al-7075 alloy composites for gear materials. Powder Metall 60:371–383. https://doi.org/10.1080/00325899.2017.1318481

    Article  CAS  Google Scholar 

  52. Mahdavi S, Akhlaghi F (2011) Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method. Tribol Lett 44:1–12. https://doi.org/10.1007/s11249-011-9818-2

    Article  CAS  Google Scholar 

  53. Baradeswaran A, Elayaperumal A, Franklin Issac R (2013) A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using taguchi technique. Procedia Eng 64:973–982. https://doi.org/10.1016/j.proeng.2013.09.174

    Article  CAS  Google Scholar 

  54. Kumar S, Panwar RS, Pandey OP (2013) Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites. Ceram Int 39:6333–6342. https://doi.org/10.1016/j.ceramint.2013.01.059

    Article  CAS  Google Scholar 

  55. Wilson S, Alpas AT (1996) Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear 196:270–278. https://doi.org/10.1016/0043-1648(96)06923-2

    Article  CAS  Google Scholar 

  56. Singh H, Irfan M, Haq U (2020b) Dry sliding friction and wear behaviour of AA6082-TiB2 in situ composites. Silicon 12:1469–1479. https://doi.org/10.1007/s12633-019-00237-y

    Article  CAS  Google Scholar 

  57. Thakur SK, Dhindaw BK (2001) Influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 247:191–201. https://doi.org/10.1016/S0043-1648(00)00536-6

    Article  CAS  Google Scholar 

  58. Venkataraman B, Sundararajan G (2000) Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear 245:22–38. https://doi.org/10.1016/S0043-1648(00)00463-4

    Article  CAS  Google Scholar 

  59. Basavarajappa S, Chandramohan G, Mukund K (2006) Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites. J Mater Eng Perform 15:668–674. https://doi.org/10.1361/105994906X150803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, INDIA for all kinds of financial and infrastructural support. Along with the facilities provided by the Advanced Research Lab for Tribology and Material Research Centre of the Institute for experimentation and characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Ethics declarations

Conflict of Interests

No potential conflict of interest was reported by the author(s) with respect to the research, authorship, and publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, S., Kumar, M. & Patnaik, A. Effect of Si3N4 Ceramic Particulates on Mechanical, Thermal, Thermo-Mechanical and Sliding Wear Performance of AA2024 Alloy Composites. Silicon 14, 239–262 (2022). https://doi.org/10.1007/s12633-020-00810-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00810-w

Keywords

Navigation