Skip to main content
Log in

Modeling of Mechanical Properties and High Temperature Wear Behavior of Al7075/SiC/CRS Composite Using RSM

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The study focuses on preparing hybrid composites with aluminium alloy strengthened with solid waste Crushed Rock Sand (CRS) and SiC through the stir casting process. The weight portion of reinforcement is diverse from 0 to 6% with a step variation of 3%. The mechanical properties such as hardness, ultimate tensile strength, impact strength, flexural strength, density, and porosity were investigated on prepared composites at room temperature. Central composite design-based response surface methodology (RSM) was espoused for computing and optimizing of the weight percentage of reinforcements considering mechanical properties as responses. An arithmetical model was developed to predict the mechanical properties and the adequacy of the model was verified using analysis of variance (ANOVA). The wear behavior associate with the composite is investigated at 28˚C and 350˚C. The specific wear rate and coefficient of friction of all samples shall be correlated with the above-mentioned temperature state. The maximum density of 2.766 g/cc is recorded for a sample with 3% wt. of SiC. The level of improvement in hardness, tensile strength, impact strength, and flexural strength is 59.7%, 45.9%, 16.9%, 58.7% relative base alloy. The specific wear rate, frictional force, and coefficient of friction decrease with elevated temperature due to the creation of oxide films. The depth and width of grooves at elevated temperatures are smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subramanian C (2010) Wear properties of aluminium-based alloys, Surface engineering of light alloys: Aluminium, magnesium and titanium alloys, pp 40–57. https://doi.org/10.1533/9781845699451.1.40

  2. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities // Sadhana. Department of Metallurgy. Indian Inst Sci Bangalore 28:319–334 (560 012, India)

    CAS  Google Scholar 

  3. Tan MJ, Zhang X (1998) Powder metal matrix composites: Selection and processing. Mater Sci Eng A 244:80–85. https://doi.org/10.1016/S0921-5093(97)00829-0

    Article  Google Scholar 

  4. Rometsch PA, Zhang Y, Knight S (2014) Heat treatment of 7xxx series aluminium alloys - Some recent developments. Trans Nonferrous Metals Soc China (English edn). 24, pp 2003–2017. https://doi.org/10.1016/S1003-6326(14)63306-9

  5. de Cortázar MG, Egizabal P, Barcena J, Le Petitcorps Y (2013) Metal matrix composites, structural materials and processes in transportation, pp 303–338. https://doi.org/10.1002/9783527649846.ch9

  6. Kumar RA, Devaraju A, Arunkumar S (2018) Experimental investigation on mechanical behaviour and wear parameters of TiC and graphite reinforced aluminium hybrid composites, Elsevier Ltd, Amsterdam.  https://doi.org/10.1016/j.matpr.2018.03.005

  7. Suresha S, Sridhara BK (2010) Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites. Mater Des 31:4470–4477. https://doi.org/10.1016/j.matdes.2010.04.053

    Article  CAS  Google Scholar 

  8. Sahin Y (2003) Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Mater Des 24:95–103. https://doi.org/10.1016/S0261-3069(02)00143-7

    Article  CAS  Google Scholar 

  9. Veeresh Kumar GB, Rao CSP, Selvaraj N (2012) Studies on mechanical and dry sliding wear of Al6061-SiC composites. Compos Part B Eng 43:1185–1191. https://doi.org/10.1016/j.compositesb.2011.08.046

    Article  CAS  Google Scholar 

  10. Kumar S, Balasubramanian V (2008) Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites. Wear 264:1026–1034. https://doi.org/10.1016/j.wear.2007.08.006

    Article  CAS  Google Scholar 

  11. Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J Mater Process Technol 161:381–387. https://doi.org/10.1016/j.jmatprotec.2004.07.068

    Article  CAS  Google Scholar 

  12. Sajjadi SA, Ezatpour HR, Beygi H (2011) Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng A 528:8765–8771. https://doi.org/10.1016/j.msea.2011.08.052

    Article  CAS  Google Scholar 

  13. Hosseini N, Karimzadeh F, Abbasi MH, Enayati MH (2012) A comparative study on the wear properties of coarse-grained Al6061 alloy and nanostructured Al6061-Al 2O 3 composites. Tribol Int 54:58–67. https://doi.org/10.1016/j.triboint.2012.04.020

    Article  CAS  Google Scholar 

  14. Javdani A, Pouyafar V, Ameli A, Volinsky AA (2016) Blended powder semisolid forming of Al7075/Al2O3 composites: Investigation of microstructure and mechanical properties. Mater Des 109:57–67. https://doi.org/10.1016/j.matdes.2016.07.042

    Article  CAS  Google Scholar 

  15. Li Y, Li QL, Li D, Liu W, Shu GG (2016) Fabrication and characterization of stir casting AA6061–31%B4C composite. Trans Nonferrous Metals Soc China (English Edition) 26: 2304–2312. https://doi.org/10.1016/S1003-6326(16)64322-4

  16. Alizadeh A, Mjradfar AA (2017) Processing, characterization, room temperature mechanical properties and fracture behavior of hot extruded multi-scale B4C reinforced 5083 aluminum alloy based composites Trans Nonferrous Metals Soc China (English edn) 27:1233–1247. https://doi.org/10.1016/S1003-6326(17)60144-4

  17. Baradeswaran A, Elaya Perumal A (2013) Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites. Compos Part B Eng 54:146–152. https://doi.org/10.1016/j.compositesb.2013.05.012

    Article  CAS  Google Scholar 

  18. Lijay KJ, Selvam JDR, Dinaharan I, Vijay SJ (2016) Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate. Trans Nonferrous Metals Soc China (English edn) 26:1791–1800. https://doi.org/10.1016/S1003-6326(16)64255-3

  19. Veeravalli RR, Nallu R, Mohammed Moulana S, Mohiuddin (2016) Mechanical and tribological properties of AA7075-TiC metal matrix composites under heat treated (T6) and cast conditions. J Mater Res Technol 5:377–383. https://doi.org/10.1016/j.jmrt.2016.03.011

    Article  CAS  Google Scholar 

  20. Dinaharan I, Murugan N (2012) Dry sliding wear behavior of AA6061/ZrB2 in-situ composite. Trans Nonferrous Metals Soc China (English edn) 22:810–818. https://doi.org/10.1016/S1003-6326(11)61249-1

  21. Verma N, Vettivel SC (2018) Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite. J Alloys Compd 741:981–998. https://doi.org/10.1016/j.jallcom.2018.01.185

    Article  CAS  Google Scholar 

  22. Imran M, Khan ARA, Megeri S, Sadik S (2016) Study of hardness and tensile strength of Aluminium-7075 percentage varying reinforced with graphite and bagasse-ash composites. Resour Efficient Technol 2:81–88. https://doi.org/10.1016/j.reffit.2016.06.007

    Article  Google Scholar 

  23. Prasanna SC, Ramesh C, Manivel R, Manikandan A (2016) Preparation of Al6061-SiC with Neem Leaf Ash in AMMC’s by Using Stir Casting Method and Evaluation of Mechanical, Wear Properties and Investigation on Microstructures. Appl Mech Mater 854:115–120. https://doi.org/10.4028/www.scientific.net/amm.854.115

    Article  Google Scholar 

  24. Raju SS, Srinivasa Rao G, Samantra C (2019) Wear behavioral assessment of Al-CSAp-MMCs using grey-fuzzy approach. Measurement 140:254–268. https://doi.org/10.1016/j.measurement.2019.04.004

    Article  Google Scholar 

  25. Rajesh S, Devaraj D, Sudhakara Pandian R, Rajakarunakaran S (2013) Multi-response optimization of machining parameters on red mud-based aluminum metal matrix composites in turning process. Int J Adv Manuf Technol 67:811–821. https://doi.org/10.1007/s00170-012-4525-1

    Article  Google Scholar 

  26. Rao RG, Ghosh M, Ganguly RI, Bose SC, Sahoo PKL (2020) Mechanical properties and age hardening response of Al6061 alloy based composites reinforced with fly ash. Mater Sci Eng A 772:138823. https://doi.org/10.1016/j.msea.2019.138823

    Article  CAS  Google Scholar 

  27. Prasad DS, Shoba C, Ramanaiah N (2014) Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol 3:79–85. https://doi.org/10.1016/j.jmrt.2013.11.002

    Article  CAS  Google Scholar 

  28. Kumar M, Megalingam A (2019) Tribological characterization of Al6061/alumina/graphite/redmud hybrid composite for brake rotor application. Part Sci Technol 37:261–274. https://doi.org/10.1080/02726351.2017.1367747

    Article  CAS  Google Scholar 

  29. Mundra S, Sindhi PR, Chandwani V, Nagar R, Agrawal V (2016) Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix. Perspect Sci 8:345–347. https://doi.org/10.1016/j.pisc.2016.04.070

    Article  Google Scholar 

  30. Ramesh M, Karthikeyan T, Kumaravel A (2014) Effect of reinforcement of natural residue (Quarry dust) to enhance the properties of aluminium metal matrix composites. J & Ind Pollut Control 30:109–116

  31. Rehman A, Das S, Dixit G (2012) Analysis of stir die cast Al-SiC composite brake drums based on coefficient of friction. Tribol Int 51:36–41. https://doi.org/10.1016/j.triboint.2012.02.007

    Article  CAS  Google Scholar 

  32. Soorya Prakash K, Kanagaraj A, Gopal PM (2015) Dry sliding wear characterization of Al 6061/rock dust composite. Trans Nonferrous Metals Soc China (English edn) 25: 3893–3903. https://doi.org/10.1016/S1003-6326(15)64036-5

  33. Thirumalvalavan S, Senthilkumar N (2019) Evaluation of mechanical properties of aluminium alloy (Lm25) reinforced with fused silica metal matrix composite. Indian J Eng Mater Sci 26:59–66

    CAS  Google Scholar 

  34. R AK, Akash SJ, Arunkumar S, Balaji V, Balamurugan M (2020) Fabrication and corrosion behaviour of aluminium metal matrix composites – A review 923:1–10. https://doi.org/10.1088/1757-899X/923/1/012056

  35. Dasgupta R, Meenai H (2005) SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy. Mater Charact 54:438–445. https://doi.org/10.1016/j.matchar.2005.01.012

    Article  CAS  Google Scholar 

  36. Hashim J, Looney L, Hashmi MSJ (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92–93:1–7. https://doi.org/10.1016/S0924-0136(99)00118-1

  37. Rohatgi PK, Sobczak J, Asthana R, Kim JK (1998) Inhomogeneities in silicon carbide distribution in stirred liquids - A water model study for synthesis of composites. Mater Sci Eng A 252:98–108. https://doi.org/10.1016/S0921-5093(98)00651-0

    Article  Google Scholar 

  38. Manikandan R, Arjunan TV (2020) Mechanical and tribological behaviours of aluminium hybrid composites reinforced by CDA-B4C. Mater Res Express 7. https://doi.org/10.1088/2053-1591/ab6b54

  39. Materials T, Company I (2018) Thermoreactive deposition/diffusion process for surface hardening of steels. Steel Heat Treating Fundam Processes :725–740. https://doi.org/10.31399/asm.hb.v04a.a0005773

  40. Xue C, Yu JK, Zhang ZQ (2013) In situ joining of titanium to SiC/Al composites by low pressure infiltration. Mater Des 47:267–273. https://doi.org/10.1016/j.matdes.2012.11.055

    Article  CAS  Google Scholar 

  41. Niranjan K, Lakshminarayanan PR (2013) Optimization of process parameters for in situ casting of Al/TiB2 composites through response surface methodology. Trans Nonferrous Metals Soc China (English edn) 23:1269–1274. https://doi.org/10.1016/S1003-6326(13)62592-3

  42. Senthilkumar N, Tamizharasan T, Gobikannan S (2014) Application of response surface methodology and firefly algorithm for optimizing multiple responses in turning AISI 1045 steel. Arab J Sci Eng 39:8015–8030. https://doi.org/10.1007/s13369-014-1320-3

    Article  Google Scholar 

  43. Purohit R, Qureshi MMU, Jain A (2020) Forming behaviour of aluminium matrix nano Al2O3 composites for automotive applications. Adv Mater Process Technol 00:1–12. https://doi.org/10.1080/2374068x.2020.1731665

    Article  Google Scholar 

  44. Chen Z, Wang T, Zheng Y, Zhao Y, Kang H, Gao L (2014) Development of TiB2 reinforced aluminum foundry alloy based in situ composites - Part I: An improved halide salt route to fabricate Al-5 wt%TiB2 master composite. Mater Sci Eng A 605:301–309. https://doi.org/10.1016/j.msea.2014.02.088

    Article  CAS  Google Scholar 

  45. Reddy PS, Kesavan R, Vijaya Ramnath B (2018) Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composite. Silicon 10:495–502. https://doi.org/10.1007/s12633-016-9479-8

  46. Gowrishankar TP, Manjunatha LH, Sangmesh B (2020) Mechanical and wear behaviour of Al6061 reinforced with graphite and TiC hybrid MMC’s. Mater Res Innov 24:179–185. https://doi.org/10.1080/14328917.2019.1628497

    Article  CAS  Google Scholar 

  47. Devaraju A, Pazhanivel K (2016) Evaluation of microstructure, mechanical and wear properties of aluminium reinforced with boron carbide nano composite. Indian J Sci Technol 9. https://doi.org/10.17485/ijst/2016/v9i20/84294

  48. Hassan AM, Tashtoush GM, Al-Khalil JA (2007) Effect of graphite and/or silicon carbide particles addition on the hardness and surface roughness of Al-4 wt% Mg alloy. J Compos Mater 41:453–465. https://doi.org/10.1177/0021998306063804

    Article  CAS  Google Scholar 

  49. Karthick SPK, Bharathidhasan K, Ashok Kumar D, Mohamed Jaffarsha R, Sreeraam FM (2020) Investigation on mechanical properties of aluminum metal matrix composites – a review' IOP Conf Ser: Mater Sci Eng 184 . https://doi.org/10.1051/e3sconf/202018401033

  50. Lakshmikanthan A, Bontha S, Krishna M, Koppad PG, Ramprabhu T (2019) Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. J Alloys Compd 786:570–580. https://doi.org/10.1016/j.jallcom.2019.01.382

    Article  CAS  Google Scholar 

  51. Lukasak DA, Koss DA (1993) Microstructural influences on fatigue crack initiation in a model particulate-reinforced aluminium alloy MMC. Composites 24:262–269. https://doi.org/10.1016/0010-4361(93)90173-6

    Article  CAS  Google Scholar 

  52. Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46:1849–1864. https://doi.org/10.1016/j.measurement.2013.02.002

    Article  Google Scholar 

  53. Ozden S, Ekici R, Nair F (2007) Investigation of impact behaviour of aluminium based SiC particle reinforced metal-matrix composites. Compos Part A Appl Sci Manuf 38:484–494. https://doi.org/10.1016/j.compositesa.2006.02.026

    Article  CAS  Google Scholar 

  54. Pani B, Chandrasekhar P, Singh S (2019) Application of box-behnken design and neural computation for tribo-mechanical performance analysis of iron-mud-filled glass-fiber/epoxy composite and parametric optimization using PSO. Polym Compos 40:1433–1449. https://doi.org/10.1002/pc.24882

    Article  CAS  Google Scholar 

  55. Selvi S, Rajasekar E (2015) Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM. J Mech Sci Technol 29:785–792. https://doi.org/10.1007/s12206-015-0140-z

    Article  Google Scholar 

  56. Baradeswaran A, Elaya A, Perumal (2014) Study on mechanical and wear properties of Al 7075/Al2O 3/graphite hybrid composites. Compos Part B Eng 56:464–471. https://doi.org/10.1016/j.compositesb.2013.08.013

    Article  CAS  Google Scholar 

  57. Kaynak C, Boylu S (2006) Effects of SiC particulates on the fatigue behaviour of an Al-alloy matrix composite. Mater Des 27:776–782. https://doi.org/10.1016/j.matdes.2005.01.009

    Article  CAS  Google Scholar 

  58. Pani B, Chandrasekhar P, Singh S (2019) Investigation of erosion behaviour of an iron-mud filled glass-fibre epoxy hybrid composite. Bull Mater Sci 42:1–13. https://doi.org/10.1007/s12034-019-1894-1

    Article  CAS  Google Scholar 

  59. Gómez de Salazar JM, Barrena MI (2004) Influence of heat treatments on the wear behaviour of an AA6092/SiC25p composite. Wear 256:286–293. https://doi.org/10.1016/S0043-1648(03)00389-2

    Article  CAS  Google Scholar 

  60. Ashok Kumar KB, Karthick R, Jayasuriya K, Aswin Kumar R (2020) Tribological behaviour of aluminum metal matrix composites – A review tribological behaviour composites – A review of aluminum metal matrix 923:1–12. https://doi.org/10.1088/1757-899X/923/1/012055

  61. Kumar CAV, Rajadurai JS (2016) Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy. Trans Nonferrous Metals Soc China (English edn) 26:63–73. https://doi.org/10.1016/S1003-6326(16)64089-X

    Article  CAS  Google Scholar 

  62. Siddesh Kumar NG, Suresh R, Shiva GS, Shankar (2020) High temperature wear behavior of Al2219/n-B4C/MoS2 hybrid metal matrix composites. Compos Commun 19:61–73. https://doi.org/10.1016/j.coco.2020.02.011

    Article  Google Scholar 

  63. Gajalakshmi K, Senthilkumar N, Prabu B (2019) Multi-response optimization of dry sliding wear parameters of AA6026 using hybrid gray relational analysis coupled with response surface method. Meas Control (UK) 52:540–553. https://doi.org/10.1177/0020294019842603

  64. Arunkumar S, Ashokkumar R, Sundaram MS, SukethKanna KM, Vigneshwara S (2020) Optimization of wear behaviour of Al7075 hybrid metal matrix composites using Taguchi approach. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.05.453

  65. Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) Wear behavior of Al-Mg-Cu-based composites containing SiC particles. Tribol Int 42:1230–1238. https://doi.org/10.1016/j.triboint.2009.04.030

    Article  CAS  Google Scholar 

  66. Rajmohan T, Palanikumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Metals Soc China (English edn) 23:2509–2517. https://doi.org/10.1016/S1003-6326(13)62762-4

  67. Ravindran P, Manisekar K, Rathika P, Narayanasamy P (2013) Tribological properties of powder metallurgy - Processed aluminium self lubricating hybrid composites with SiC additions. Mater Des 45:561–570. https://doi.org/10.1016/j.matdes.2012.09.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ashok Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok Kumar, R., Devaraju, A. Modeling of Mechanical Properties and High Temperature Wear Behavior of Al7075/SiC/CRS Composite Using RSM. Silicon 13, 3499–3519 (2021). https://doi.org/10.1007/s12633-020-00801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00801-x

Keywords

Navigation