Skip to main content
Log in

Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The need to enhance the mechanical performance of cement-based composites such as concrete and mortar has led to the development of various innovative ways to meet the current and future performance demand. The recent trend in cement-based composites technology has shown the viability of further enhancement of the mechanical performance of cement-based composites by the incorporation of nanomaterials. As the proportions of components in cement-based composites, it is paramount for the stakeholders in the construction industry to understand how nanomaterials affect the mechanical performance of these composites. Therefore, this overview was undertaken to investigates the effect of nanomaterials on the mechanical properties of cement-based composites. Results from various studies showed that the mechanical properties of cement-based composites can be improved with the incorporation of nanomaterials. The enhancement in the mechanical properties of the cement-based composites with the incorporation of nanomaterials was attributed to the pore filling effect of the nanomaterials coupled with the ability to accelerate hydration reaction which results in the formation of more products. It was also observed that the optimum dosage of nanomaterial varies with types. Therefore, it was recommended to determine the optimum dosage of these materials before its large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Purnell P (2013) The carbon footprint of reinforced concrete. Adv Cem Res. https://doi.org/10.1680/adcr.13.00013

  2. Adesina A (2018) Concrete sustainability issues. In: 38th Cem. Concr. Sci. Conf. UK, London

  3. Sivakrishna A, Adesina A, Awoyera PO, Rajesh Kumar K (2019) Green concrete: a review of recent developments. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.08.202

  4. Andrew RM (2018) Global CO2 emissions from cement production. Earth Syst Sci Data. https://doi.org/10.5194/essd-10-195-2018

  5. Jalal M, Mansouri E, Sharifipour M, Pouladkhan AR (2012) Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater Des 34:389–400. https://doi.org/10.1016/j.matdes.2011.08.037

    Article  CAS  Google Scholar 

  6. Diab AM, Elyamany HE, Abd Elmoaty AEM, Sreh MM (2019) Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids. Constr Build Mater 210:210–231. https://doi.org/10.1016/j.conbuildmat.2019.03.099

    Article  CAS  Google Scholar 

  7. Wu Z, Shi C, Khayat KH, Wan S (2016) Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cem Concr Compos 70:24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003

    Article  CAS  Google Scholar 

  8. Awoyera PO, Adesina A, Gobinath R (2019) Role of recycling fine materials as filler for improving performance of concrete - a review. Aust J Civ Eng 17:85–95. https://doi.org/10.1080/14488353.2019.1626692

    Article  Google Scholar 

  9. Adesina A, Awoyera P (2019) Overview of trends in the application of waste materials in self-compacting concrete production. SN Appl Sci. https://doi.org/10.1007/s42452-019-1012-4

  10. Ikponmwosa EE, Ehikhuenmen S, Emeshie J, Adesina A (2020) Performance of coconut shell alkali-activated concrete: experimental investigation and statistical modelling. https://doi.org/10.1007/s12633-020-00435-z

  11. Adesina A (2019) Durability enhancement of concrete using nanomaterials: an overview. Mater Sci Forum. https://doi.org/10.4028/www.scientific.net/MSF.967.221

  12. Behfarnia K, Salemi N (2013) The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr Build Mater 48:580–584. https://doi.org/10.1016/j.conbuildmat.2013.07.088

    Article  Google Scholar 

  13. Adesina A (2020) Nanomaterials in cementitious composites: review of durability performance. J Build Pathol Rehabil. https://doi.org/10.1007/s41024-020-00089-9

  14. Morsy MS, Alsayed SH, Aqel M (2011) Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr Build Mater 25:145–149. https://doi.org/10.1016/j.conbuildmat.2010.06.046

    Article  Google Scholar 

  15. Sobolev K (2015) Nanotechnology and Nanoengineering of construction materials. Nanotechnol Constr. https://doi.org/10.1007/978-3-319-17088-6_1

  16. Al Bakri AMM, Kamarudin H, Bnhussain M, Liyana J, Ruzaidi CM (2013) Nano geopolymer for sustainable concrete using fly ash synthesized by high energy ball milling, in: Appl. Mech Mater 313-314:169–173. https://doi.org/10.4028/www.scientific.net/AMM.313-314.169

    Article  CAS  Google Scholar 

  17. Adak D, Sarkar M, Mandal S (2017) Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr Build Mater 135:430–439. https://doi.org/10.1016/j.conbuildmat.2016.12.111

    Article  CAS  Google Scholar 

  18. Sanchez F, Sobolev K (2010) Nanotechnology in concrete - a review. Constr Build Mater 24:2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014

    Article  Google Scholar 

  19. Silvestre J, Silvestre N, De Brito J (2016) Review on concrete nanotechnology. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2015.1042070

  20. Sato T, Diallo F (2010) Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp Res Rec 2141:61–67. https://doi.org/10.3141/2141-11

    Article  CAS  Google Scholar 

  21. Wang X, Dong S, Ashour A, Zhang W, Han B (2020) Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Constr Build Mater 240:117942. https://doi.org/10.1016/j.conbuildmat.2019.117942

    Article  CAS  Google Scholar 

  22. Nasibulin AG, Shandakov SD, Nasibulina LI, Cwirzen A, Mudimela PR, Habermehl-Cwirzen K, Grishin DA, Gavrilov YV, Malm JEM, Tapper U, Tian Y, Penttala V, Karppinen MJ, Kauppinen EI (2009) A novel cement-based hybrid material. New J Phys 11. https://doi.org/10.1088/1367-2630/11/2/023013

  23. Hawreen A, Bogas JA, Dias APS (2018) On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr Build Mater 168:459–470. https://doi.org/10.1016/j.conbuildmat.2018.02.146

    Article  CAS  Google Scholar 

  24. Péra J, Husson S, Guilhot B (1999) Influence of finely ground limestone on cement hydration. Cem Concr Compos 21:99–105. https://doi.org/10.1016/S0958-9465(98)00020-1

    Article  Google Scholar 

  25. De Weerdt K, Ben Haha M, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41:279–291. https://doi.org/10.1016/j.cemconres.2010.11.014

    Article  CAS  Google Scholar 

  26. Porro A, Dolado JS, Campillo I, Erkizia E, De Miguel Y, De Ibarra YS, Ayuela A (2005) Effects of nanosilica additions on cement pastes. In: Proc. Int. Conf. Appl. Nanotechnol. Concr. Des. https://doi.org/10.1680/aonicd.34082.0009

  27. Cassar L (2004) Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bull. https://doi.org/10.1557/mrs2004.99

  28. Li GY, Wang PM, Zhao X (2007) Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos 29:377–382. https://doi.org/10.1016/j.cemconcomp.2006.12.011

    Article  CAS  Google Scholar 

  29. Chung DDL (2001) Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon N Y 39:1119–1125. https://doi.org/10.1016/S0008-6223(00)00314-6

    Article  CAS  Google Scholar 

  30. Rashad AM (2013) A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials - a short guide for civil engineer. Mater Des 52:143–157. https://doi.org/10.1016/j.matdes.2013.05.035

    Article  CAS  Google Scholar 

  31. Amin MS, El-Gamal SMA, Hashem FS (2013) Effect of addition of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes. J Therm Anal Calorim 112:1253–1259. https://doi.org/10.1007/s10973-012-2663-1

    Article  CAS  Google Scholar 

  32. Shekari AH, Razzaghi MS (2011) Influence of nano particles on durability and mechanical properties of high performance concrete. Procedia Eng, vol 14, pp 3036–3041. https://doi.org/10.1016/j.proeng.2011.07.382

    Chapter  Google Scholar 

  33. Ji T (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem Concr Res 35:1943–1947. https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  CAS  Google Scholar 

  34. Mohammed BS, Achara BE, Liew MS, Alaloul WS, Khed VC (2019) Effects of elevated temperature on the tensile properties of NS-modified self-consolidating engineered cementitious composites and property optimization using response surface methodology (RSM). Constr Build Mater 206:449–469. https://doi.org/10.1016/j.conbuildmat.2019.02.033

    Article  CAS  Google Scholar 

  35. Peyvandi A, Soroushian P, Balachandra AM, Sobolev K (2013) Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Constr Build Mater 47:111–117. https://doi.org/10.1016/j.conbuildmat.2013.05.002

    Article  Google Scholar 

  36. Ansari rad T, Tanzadeh J, Pourdada A (2020) Laboratory evaluation of self-compacting fiber-reinforced concrete modified with hybrid of nanomaterials. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117211

  37. Hakamy A, Shaikh F, Low IM (2013) Microstructures and mechanical properties of hemp fabric reinforced organoclay-cement nanocomposites. Constr Build Mater 49:298–307. https://doi.org/10.1016/j.conbuildmat.2013.08.028

    Article  CAS  Google Scholar 

  38. Hakamy A, Shaikh FUA, Low IM (2015) Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Compos Part B Eng 78:174–184. https://doi.org/10.1016/j.compositesb.2015.03.074

    Article  CAS  Google Scholar 

  39. Hakamy A, Shaikh FUA, Low IM (2014) Characteristics of hemp fabric reinforced nanoclay-cement nanocomposites. Cem Concr Compos 50:27–35. https://doi.org/10.1016/j.cemconcomp.2014.03.002

    Article  CAS  Google Scholar 

  40. Khaloo A, Mobini MH, Hosseini P (2016) Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr Build Mater 113:188–201. https://doi.org/10.1016/j.conbuildmat.2016.03.041

    Article  CAS  Google Scholar 

  41. Gonzalez M, Tighe SL, Hui K, Rahman S, de Oliveira Lima A (2016) Evaluation of freeze/thaw and scaling response of nanoconcrete for Portland cement concrete (PCC) pavements. Constr Build Mater 120:465–472. https://doi.org/10.1016/j.conbuildmat.2016.05.043

    Article  CAS  Google Scholar 

  42. Naji Givi A, Abdul Rashid S, Aziz FNA, Salleh MAM (2011) The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete. Compos Part B Eng 42:562–569. https://doi.org/10.1016/j.compositesb.2010.10.002

    Article  CAS  Google Scholar 

  43. Farzadnia N, Abang Ali AA, Demirboga R, Anwar MP (2013) Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem Concr Res 48:97–104. https://doi.org/10.1016/j.cemconres.2013.03.005

    Article  CAS  Google Scholar 

  44. Xu Q, Meng T, Huang M (2012) Effects of Nano-CaCO 3 on the compressive strength and microstructure of high strength concrete in different curing temperature, in: Appl. Mech Mater 121-126:126–131. https://doi.org/10.4028/www.scientific.net/AMM.121-126.126

    Article  CAS  Google Scholar 

  45. Isfahani FT, Redaelli E, Lollini F, Li W, Bertolini L (2016) Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. Adv Mater Sci Eng. https://doi.org/10.1155/2016/8453567

  46. Yu R, Spiesz P, Brouwers HJH (2014) Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr Build Mater 65:140–150. https://doi.org/10.1016/j.conbuildmat.2014.04.063

    Article  Google Scholar 

  47. Supit SWM, Shaikh FUA (2014) Effect of Nano-CaCO3 on compressive strength development of high volume fly ash mortars and concretes. J Adv Concr Technol 12:178–186. https://doi.org/10.3151/jact.12.178

    Article  CAS  Google Scholar 

  48. Sikora P, Horszczaruk E, Cendrowski K, Mijowska E (2016) The influence of Nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites. Nanoscale Res Lett 11:182. https://doi.org/10.1186/s11671-016-1401-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh LP, Agarwal SK, Bhattacharyya SK, Sharma U, Ahalawat S (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater Nanotechnol. https://doi.org/10.5772/50950

  50. Berra M, Carassiti F, Mangialardi T, Paolini AE, Sebastiani M (2012) Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr Build Mater 35:666–675. https://doi.org/10.1016/j.conbuildmat.2012.04.132

    Article  Google Scholar 

  51. Jo BW, Kim CH, Lim JH (2007) Investigations on the development of powder concrete with nano-SiO2 particles. KSCE J Civ Eng 11:37–42. https://doi.org/10.1007/bf02823370

    Article  Google Scholar 

  52. Singh LP, Bhattacharyya SK, Mishra G, Ahalawat S (2012) Reduction of calcium leaching in cement hydration process using nanomaterials. Mater Technol 27:233–238. https://doi.org/10.1179/1753555712Y.0000000005

    Article  CAS  Google Scholar 

  53. Meng T, Yu Y, Qian X, Zhan S, Qian K (2012) Effect of nano-TiO 2 on the mechanical properties of cement mortar. Constr Build Mater 29:241–245. https://doi.org/10.1016/j.conbuildmat.2011.10.047

    Article  Google Scholar 

  54. Chen J, Kou SC, Poon CS (2012) Hydration and properties of nano-TiO 2 blended cement composites. Cem Concr Compos 34:642–649. https://doi.org/10.1016/j.cemconcomp.2012.02.009

    Article  CAS  Google Scholar 

  55. Behnood A, Ziari H (2008) Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem Concr Compos 30:106–112. https://doi.org/10.1016/j.cemconcomp.2007.06.003

    Article  CAS  Google Scholar 

  56. Li Z, Wang H, He S, Lu Y, Wang M (2006) Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett 60:356–359. https://doi.org/10.1016/j.matlet.2005.08.061

    Article  CAS  Google Scholar 

  57. Chaipanich A, Nochaiya T, Wongkeo W, Torkittikul P (2010) Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Mater Sci Eng A 527:1063–1067. https://doi.org/10.1016/j.msea.2009.09.039

    Article  CAS  Google Scholar 

  58. Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 32:110–115. https://doi.org/10.1016/j.cemconcomp.2009.10.007

    Article  CAS  Google Scholar 

  59. Babak F, Abolfazl H, Alimorad R, Parviz G (2014) Preparation and mechanical properties of graphene oxide: cement nanocomposites. Sci World J 2014:1–10. https://doi.org/10.1155/2014/276323

    Article  CAS  Google Scholar 

  60. Mondal P, Shah SP, Marks LD, Gaitero JJ (2010) Comparative study of the effects of microsilica and nanosilica in concrete. Transp Res Rec 2141:6–9. https://doi.org/10.3141/2141-02

    Article  CAS  Google Scholar 

  61. Sato T, Beaudoin JJ (2011) Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Adv Cem Res. https://doi.org/10.1680/adcr.9.00016

  62. Riahi S, Nazari A (2011) Compressive strength and abrasion resistance of concrete containing SiO2 and CuO nanoparticles in different curing media. Sci China Technol Sci. https://doi.org/10.1007/s11431-011-4463-4

  63. Shamsai A, Peroti S, Rahmani K, Rahemi L (2012) Effect of water-cement ratio on abrasive strength, porosity and permeability of nano-silica concrete. World Appl Sci J

  64. Lucas SS, Ferreira VM, De Aguiar JLB (2013) Incorporation of titanium dioxide nanoparticles in mortars - influence of microstructure in the hardened state properties and photocatalytic activity. Cem Concr Res 43:112–120. https://doi.org/10.1016/j.cemconres.2012.09.007

    Article  CAS  Google Scholar 

  65. Li H, Xiao HG, Yuan J, Ou J (2004) Microstructure of cement mortar with nano-particles. Compos. Part B Eng. 35:185–189. https://doi.org/10.1016/S1359-8368(03)00052-0

    Article  CAS  Google Scholar 

  66. Li H, hua Zhang M, ping Ou J (2006) Abrasion resistance of concrete containing nano-particles for pavement. Wear. https://doi.org/10.1016/j.wear.2005.08.006

  67. Alamri H, Low IM (2012) Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites. Polym Compos 33:589–600. https://doi.org/10.1002/pc.22163

    Article  CAS  Google Scholar 

  68. Stynoski P, Mondal P, Marsh C (2015) Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem Concr Compos 55:232–240. https://doi.org/10.1016/j.cemconcomp.2014.08.005

    Article  CAS  Google Scholar 

  69. Li WW, Ji WM, Fang GH, Liu YQ, Xing F, Liu YK, Dong BQ (2016) Electrochemical impedance interpretation for the fracture toughness of carbon nanotube/cement composites. Constr Build Mater 114:499–505. https://doi.org/10.1016/j.conbuildmat.2016.03.215

    Article  CAS  Google Scholar 

  70. Zou B, Chen SJ, Korayem AH, Collins F, Wang CM, Duan WH (2015) Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon N Y 85:212–220. https://doi.org/10.1016/j.carbon.2014.12.094

    Article  CAS  Google Scholar 

  71. Morsy MS, Alsayed SH, Aqel M (2010) Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. Int J Civ Environ Eng IJCEE-IJENS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeyemi Adesina.

Ethics declarations

Conflict of Interest

None.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesina, A. Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials. Silicon 14, 135–144 (2022). https://doi.org/10.1007/s12633-020-00800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00800-y

Keywords

Navigation