Skip to main content
Log in

Quartz Ore Beneficiation by Reverse Flotation for Silicon Production

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work the reverse flotation as beneficiation process for high-purity silica valorization from Draissa quartz deposits (Algeria) is studied as a potential raw material for photovoltaic silicon production and starting charge for crystal growth material for a large wide of applications such laser and scintillation. The samples are investigated by optical microscopy, secondary ion mass spectroscopy, X-ray fluorescence and Raman spectroscopy. The microscopic investigations detect solid impurities such as alkaline and plagioclase feldspars, micas and iron oxides. The analyzed silica shows well-developed crystals areas, delimited by microcrystalline regions. Impurities are predominantly located in low quartz granulometry (50-100 μm). The XRF results highlight 93.63 wt% SiO2, 0.16 wt%, Fe2O3, 0.171 wt% Cl, 0.15 wt% CaO, 5.74 wt% Al2O3, 0.074 wt% K2O, 0.001 wt% CdO, 0.006 wt% SnO2. However, these results remain insufficient for predestined use of this raw material. A preliminary enrichment using reverse flotation process improves the silica purity up to 99.6% and removes the major impurities, which is suitable intermediate technological product able for silicon production and optical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kheloufi A, Bobocioiu E, Kerkar F, Kefaifi A, Anas S, Medjahed SA, Belkacem Y, Keffous A (2017) Optical and spectroscopic characterizations of Algerian silica raw material to predict high quality solar-grade silicon. J Opt Mat 65:142–149. https://doi.org/10.1016/j.optmat.2016.09.063

    Article  CAS  Google Scholar 

  2. Hu J, BandoY ZJ, Yuan X, Sekiguchi T, Golberg (2005) Self-assembly of SiO2 nanowires and Si microwires into hierarchical Heterostructures on a large scale†. J adv Mat 17:971–975. https://doi.org/10.1002/adma.200401789

    Article  CAS  Google Scholar 

  3. Li J, Li X, Shen Q, Zhang Z, Du F (2010) Further purification of industrial quartz by much milder conditions and a harmless method. J Environ Sci Technol 44:7673–7677. https://doi.org/10.1021/es101104c

    Article  CAS  Google Scholar 

  4. Shapiro B, Adhikari R, Aguiar O, Bonilla E, Fan D, Gan L, Gomez I, Khandelwal S (2017) Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories. Cryog. 81:83–92. https://doi.org/10.1016/j.cryogenics.2016.12.004

    Article  CAS  Google Scholar 

  5. Huang H, Li J, Li X, Zhang Z (2013) Iron removal from extremely fine quartz and its kinetics. J Sep and Pur Tech 108:45–50. https://doi.org/10.1016/j.seppur.2013.01.046

    Article  CAS  Google Scholar 

  6. Mowla D, Karimi G, Ostadnezhad K (2008) Removal of hematite from silica sand ore by reverse flotation technique. J Sep and Pur Tech 58:419–423. https://doi.org/10.1016/j.seppur.2007.08.023

    Article  CAS  Google Scholar 

  7. Taxiarchou M, Panias D, Douni I, Paspaliaris I, Kontopoulos A (1997) Removal of iron from silica sand by leaching with oxalic acid. J Hydrometeorol 46:215–227. https://doi.org/10.1016/S0304-386X(97)00015-7

    Article  CAS  Google Scholar 

  8. Farmer AD, Collings AF, Jameson G (2000) The application of power ultrasound to the surface cleaning of silica and heavy mineral sand. J Ultrason Sonochem 7:243–247

    Article  CAS  Google Scholar 

  9. Pavlovic S, Brandao PRG (2003) Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. J Miner Eng. 16:1117–1122. https://doi.org/10.1016/j.mineng.2003.06.011

    Article  CAS  Google Scholar 

  10. Yuhua W, Jianwei R (2005) The flotation of quartz from iron minerals with a combined quaternary ammonium salt. Int J Miner Proc 77(2):116–122. https://doi.org/10.1016/j.minpro.2005.03.001

    Article  CAS  Google Scholar 

  11. Quast K (2006) Flotation of hematite using C6–C18 saturated fatty acids. J Miner Eng 19:582–597. https://doi.org/10.1016/j.mineng.2005.09.010

    Article  CAS  Google Scholar 

  12. Veglio F, Passariello B, Barbaro M, Plescia P, Marabini AM (1997) Drum leaching tests in iron removal from quartz using oxalic and sulphuric acids. Int J Mine Process 54:183–200. https://doi.org/10.1016/S0301-7516(98)00014-3

    Article  Google Scholar 

  13. Kayal N, Singh N (2007) Stepwise complexometric determination of aluminium, titanium and iron concentrations in silica sand and allied materials. Chem Cent J 1. https://doi.org/10.1186/1752-153x-1-24

  14. Veglio F, Passariello B, Abbruzzese C (1998) Iron removal process for high-purity silica sands production by oxalic leaching. Ind Eng Chem Res 38:4443–4448. https://doi.org/10.1021/ie990156b

    Article  CAS  Google Scholar 

  15. Miettinen T, Ralston J, Fornasiero D (2010) The limits of fine particle flotation. J Min Eng. 23:420–437. https://doi.org/10.1016/j.mineng.2009.12.006

    Article  CAS  Google Scholar 

  16. Martínez-Luévanos A, Rodríguez-Delgado MG, Uribe-Salas A, Carrillo Pedroza FR, Osuna-Alarcón JG (2011) Leaching kinetics of iron from low grade kaolin by oxalic acid solutions. J App Clay Sci 51:473–477. https://doi.org/10.1016/j.clay.2011.01.011

    Article  CAS  Google Scholar 

  17. Leistner T, Peuker UA, Rudolph M (2017) How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. J Min Eng 109:1–9. https://doi.org/10.1016/j.mineng.2017.02.005

    Article  CAS  Google Scholar 

  18. Mandal SK, Banerjee PC (2004) Iron leaching from China clay with oxalic acid: effect of different physic–chemical parameters. Int J Min Proc. 74:263–270. https://doi.org/10.1016/j.minpro.2004.01.004

    Article  CAS  Google Scholar 

  19. Lee SO, Tran T, Park YY, Kim SJ, Kim MJ (2006) Study on the kinetics of iron oxide leaching by oxalic acid. Int J Min Proc 80:144–152. https://doi.org/10.1016/j.minpro.2006.03.012

    Article  CAS  Google Scholar 

  20. Du F, Li J, Li X, Zhang Z (2011) Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid. J Ultrason Sonochem 18:389–393. https://doi.org/10.1016/j.ultsonch.2010.07.006

    Article  CAS  Google Scholar 

  21. Raman V, Abbas A (2008) Experimental investigation on ultrasound mediated particle breakage. J Ultrason Sonochem. 15:55–64

    Article  CAS  Google Scholar 

  22. Mgaidi A, Jendoubi F, Oulahna D, Maaoui ME, Dodds JA (2004) Kinetics of the dissolution of sand into alkaline solutions: application of a modified shrinking core model. J Hydrometeorol 71:435–446. https://doi.org/10.1016/S0304-386X(03)00117-8

    Article  CAS  Google Scholar 

  23. Liou TH (2004) Kinetics study of thermal decomposition of electronic packaging material. Chem Eng J. https://doi.org/10.1016/S1385-8947(03)00181-5

  24. Wang L, Peng Y, Runge K, Bradshaw D (2015) A review of entrainment: mechanisms, contributing factors and modelling in flotation. Min Eng J 70:77–91. https://doi.org/10.1016/j.mineng.2014.09.003

    Article  CAS  Google Scholar 

  25. Rapport sur les travaux d’exploration de la barite de la région de Draissa (2013) EPE ORGM Spa. https://gprgindonesia.wordpress.com/geologicalsetting-of-algeria. (Accessed July 4th 2013)

  26. Anas S, Kheloufi A, Boutarek Zaourar N (2017) Characterization of impurities present on Tihimatine (Hoggar) quartz, Algeria. J of Afr Earth Sci 135:213–219. https://doi.org/10.1016/j.jafrearsci.2017.09.001

    Article  CAS  Google Scholar 

  27. Götze J, Plötze M, D, Habermann S (2001) Cathodoluminescence (CL) of quartz: origin, spectral characteristics and practical applications. J Miner and Petr https://doi.org/10.1007/s007100170040, 71, 225, 250

  28. Muller A, Wanvik J E, Ihlen PM (2012) Deposits, mineralogy and analytics, Springer Geology, Petrological and chemical characterization of high-purity quartz deposits with example from Norway, in Quartz: deposit, mineralogy and analytic, springer Geology

  29. Filippov LO, Severov VV, Filippova I (2014) An overview of the beneficiation of iron ores via reverse cationic flotation. J Min proc 127:62–69. https://doi.org/10.1016/j.minpro.2014.01.002

    Article  CAS  Google Scholar 

  30. Suman SK, Kumar S (2020) Reverse flotation studies on iron ore slime by the synergistic effect of cationic collectors. Sep Sci and Tech J 55:1702–1714. https://doi.org/10.1080/01496395.2019.1604757

    Article  CAS  Google Scholar 

  31. Lelis DF, Da Cruz DG, Fernandes Lima RM (2019) Effects of calcium and chloride ions in Iron ore reverse cationic flotation: fundamental studies. Min Proc and Extr Metall R 40:402–409. https://doi.org/10.1080/08827508.2019.1666122

    Article  CAS  Google Scholar 

  32. Wang L, Sun W, Liu R (2014) Mechanism of separating muscovite and quartz by flotation. J of Cent Sou Univ 21:3596–3602. https://doi.org/10.1007/s11771-014-2341-5

    Article  CAS  Google Scholar 

  33. Gulsoy OY, Can NM, Bayraktar I, Ersayin S, Hizal M, Sahin AI (2004) Two stage flotation of sodium feldspar—from laboratory to industrial application. Min Proc and Extr Metal 113:139–144

    Article  Google Scholar 

  34. Wang L, Tian M, Khoso SA, Hu Y, Sun W, Gao Z (2019) Improved flotation separation of apatite from calcite with Benzohydroxamic acid collector. Min Proc and Extr Met 40:427–436. https://doi.org/10.1080/08827508.2019.1666126

    Article  CAS  Google Scholar 

  35. Heyes GW, Allan GC, Bruckard WJ, Sparrow GJ (2012) Review of flotation of feldspar. Min Proc and Ext Met J 121:72–78. https://doi.org/10.1179/1743285512y.0000000004

    Article  CAS  Google Scholar 

  36. Hanumantha K, Rao KS, Forssberg E (1997) Mixed collector systems in flotation. Int J Min Proc 51:67–79. https://doi.org/10.1016/S0301-7516(97)00039-2

    Article  Google Scholar 

  37. Orhan EC, Bayraktar I (2006) Amine–oleate interactions in feldspar flotation. J Min Eng. 19:48–55. https://doi.org/10.1016/j.mineng.2005.06.001

    Article  CAS  Google Scholar 

  38. Wang W, Cong J, Deng J, Weng X, Lin Y, Huang Y, Peng T (2018) J Min. https://doi.org/10.3390/min8040149

  39. Larsen E, Kleiv RA (2016) Flotation of quartz from quartz-feldspar mixtures by the HF. J Min Eng. 98:49–51. https://doi.org/10.1016/j.mineng.2016.07.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the CEO of Algerian Albaryte Company Mr Ahmed Belhocine to allow us the collection of the samples from the area of interest. We would like to thank also Dr. Ould Hamou Malek for its precious help in the flotation process at Mining Engineering Department of the National Polytechnic School of Algiers. Raman analyses are performed at Ecole Normale Superieure of Lyon (ENS). The Raman facility in Lyon is supported by the “Institut de Science de l’Univers (INSU)”. We are also grateful to Gilles Montagnac for assistance. Cathodoluminescence analyzes are performed at Lithos Center from Bucharest. We thank Izabela Mares for his help. We are grateful to Barbara Mattison for help with the English editing.

Funding

Funding was provided by the General Direction of research and development technologies/Ministry of Higher Education and Research Sciences DGRSDT/MERS (ALGERIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Kheloufi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Draissa quartz deposits (Algeria) is studied as a potential raw material for photovoltaic silicon production and crystal growth material

• Solid impurities such as alkaline and plagioclase feldspars, micas and iron oxides are detected

• The reverse flotation process used in three stages as a high efficiency selective process of quartz beneficiation

• The recoveries rate of hematite, mica and feldspar achieve 97 wt%, 99 wt% and 99wt% respectively

• Reverse flotation increases the quartz concentration up to 99.65% SiO2 which is suitable product able for silicon production for photovoltaic application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medjahed, S., Kheloufi, A., Bobocioiu, E. et al. Quartz Ore Beneficiation by Reverse Flotation for Silicon Production. Silicon 14, 87–97 (2022). https://doi.org/10.1007/s12633-020-00790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00790-x

Keywords

Navigation