Skip to main content
Log in

Novel Design for the Temperature Sensing Using Annular Photonic Crystals

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research, a high-performance temperature sensor of a one-dimensional defective annular photonic crystal is proposed. The structure design of our proposed defective annular photonic crystal is: [(Si/SiO2) N/2 TiO2 (Si/SiO2) N/2] with TiO2 as a defect layer. The transmission spectrum of the defective annular photonic crystal is calculated by using the well-modified transfer matrix method in cylindrical coordinates. Thermal characteristics of the defect mode that emerged in the transmission spectrum are studied in the visible region. Dependence of the defect mode frequency on the defect layer thickness is also discussed. As temperature increases, the defect mode is shifted to new positions due to thermal expansion and thermo–optical effects. Numerical results show that the core radius has an important effect on the transmission intensity of the defect mode. Moreover, our proposed temperature sensor showed a sensitivity of about 11 nm / 1000 °C, figure of merit of 0.218 / oC and a very small full width at half maximum of about 0.049 nm. The proposed annular photonic crystals temperature sensor could present a novel method to overcome the limited performance of the planar photonic crystals temperature sensors besides the possibility of using in many potential filtering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elsayed HAE, Abadla MM (2019) Transmission investigation of one-dimensional Fibonacci-based quasi-periodic photonic crystals including nanocomposite material and plasma. Phys Scr 95:035504. https://doi.org/10.1088/1402-4896/ab4c68

    Article  CAS  Google Scholar 

  2. Abadla MM, Tabaza NA, Tabaza W, Ramanujam NR, Joseph Wilson KS, Vigneswaran D, Taya SA (2019) Properties of ternary photonic crystal consisting of dielectric/plasma/dielectric as a lattice period. Optik 185:784–793

    Article  CAS  Google Scholar 

  3. Devashish D, Ojambati OS, Hasan SB, van der Vegt JJW, Vos WL (2019) Three-dimensional photonic band gap cavity with finite support: enhanced energy density and optical absorption. Phys Rev B 99:075112

    Article  CAS  Google Scholar 

  4. Ahmed AM, Mehaney A (2019) Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9:6973

    Article  Google Scholar 

  5. Elsayed HA, Mehaney A (2019) A new method for glucose detection using the one dimensional defective photonic crystals. Mater Res Express 6:036201

    Article  Google Scholar 

  6. Elsayed HA (2018) A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals. Mater Chem Phys 216:191–196

    Article  CAS  Google Scholar 

  7. Abd El-Aziz OA, Elsayed HA, Sayed MI (2019) One-dimensional defective photonic crystals for the sensing and detection of protein. Appl Opt 58(30):8309–8315

    Article  CAS  Google Scholar 

  8. Yang S, Zhang Y, Peng X, Lu Y, Xie S, Li J, Chen W, Jiang Z, Peng J, Li H (2006) Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field, opt. Express 14(7):3015–3023

    Article  Google Scholar 

  9. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  CAS  Google Scholar 

  10. John S (1987) Strong localization of photons in certain disordered dielectric Superlattices. Phys Rev Lett 58:2486–2489

    Article  CAS  Google Scholar 

  11. El-Naggar SA (2015) Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystals. Opt Quant Electron 47:1627–1636

    Article  CAS  Google Scholar 

  12. Aly AH, Mohamed D, Elsayed HA, Mehaney A (2018) Fano resonance by means of the one-dimensional superconductor photonic crystals. J Supercond Nov Magn 31(12):3827–3833

    Article  CAS  Google Scholar 

  13. Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T (2005) Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt Express 13:2678–2687

    Article  CAS  Google Scholar 

  14. Hadfield RH (2009) Single-photon detectors for optical quantum information applications. Nat Photon 3:696–705

    Article  CAS  Google Scholar 

  15. Aly AH, Elsayed HA (2017) Tunability of defective one dimensional photonic crystals based on faraday effect. J Mod Opt 64(419):871–877

    Article  Google Scholar 

  16. Segovia-Chaves F, Vinck-Posada H (2019) Tuning of the defect mode in a 1D superconductor-semiconductor crystal with hydrostatic pressure dependent frequency of the transverse optical phonons. Physica C 556:7–13

    Article  CAS  Google Scholar 

  17. Segovia-Chaves F, Vinck-Posada H, Dhasarathan V, Rajan MSM (2019) Transmittance spectrum in a 1D photonic crystal composed fused silica and sea water. Optik 185:930–935

    Article  CAS  Google Scholar 

  18. Chen T, Han Z, Liu J, Hong Z (2014) Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors. Appl Opt 53:3454–3458

    Article  Google Scholar 

  19. Wu J, Gao J (2015) Low temperature sensor based on one-dimensional photonic crystals with a dielectric-superconducting pair defect. Optik 126:5368–5371

  20. Elmahdy, N A, Esmail, M S & El-Okr, M M (2018). Characterization of a thermal sensor based on one-dimensional photonic crystal with central liquid crystal defect, Optik, 170, 444–451

  21. Srivastava SK, Aghajamali A (2016) Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-T c superconductor. J Supercond Nov Magn 29(6):1423–1431

    Article  CAS  Google Scholar 

  22. Kaliteevski MA, Abram RA, Nikolaev VV, Sokolovski GS (1999) Bragg reflectors for cylindrical waves. J Mod Opt 46(5):875–890

    Article  CAS  Google Scholar 

  23. Hu C-A, Wu C-J, Yang T-J, Yang S-L (2013) Analysis of optical properties in cylindrical dielectric photonic crystal, opt. Communications 291:424–434

    CAS  Google Scholar 

  24. Hu C-A, Wu, Yang S-L, Yang T-J (2013) Switchable tunneling mode for cylindrical photonic quantum well consisting of photonic crystals containing liquid crystal. Opt. Communications 297:141–146

    Article  CAS  Google Scholar 

  25. Srivastava SK, Aghajamali A (2016) Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials. Physica B 489:67–72

    Article  CAS  Google Scholar 

  26. Chen M-S, Wu C-J, Yang T-J (2012) Narrowband reflection-and-transmission filter in an annular defective photonic crystal containing an ultrathin metallic film, opt. Communications 285:3143–3149

    CAS  Google Scholar 

  27. El-Naggar SA (2019) Properties of defect modes in cylindrical photonic crystals. Optik 200:163447

    Article  Google Scholar 

  28. Chang Y-H, Jhu Y-Y, Wu C-J (2012) Temperature dependence of defect mode in a defective photonic crystal, opt. Communications 285(6):1501–1504

    CAS  Google Scholar 

  29. Nikolaev VV, Sokolovskii GS, Kaliteevskii MA (1999) Bragg reflectors for cylindrical waves. Semiconductors 33(2):147–152

    Article  CAS  Google Scholar 

  30. Elsayed HA, El-Naggar SA, Aly AH (2014) Thermal properties and two-dimensional photonic band gaps. J Mod Opt 61(5):385–389

    Article  CAS  Google Scholar 

  31. Cheng, D K (1983). Field and wave electromagnetics, Addison Wesley Publishing Company, Canada

  32. Chourasia RK, Yadav CS, Upadhyay A, Chourasia NK, Singh V (2020) Analysis of Bragg fiber waveguides having a defect layer for biosensing applications. Optik 200:163400

    Article  CAS  Google Scholar 

  33. Chen M-S, Wu C-J, Yang T-J (2009) Optical properties of a superconducting annular periodic multilayer structure. Solid State Commun 149:1888–1893

    Article  CAS  Google Scholar 

  34. Pedrotti, F L Pedrotti, L M & Pedrotti, L S (2007). Introduction to optics, Pearson Prentice Education Inc., New Jersey

  35. Tatian B (1984) Fitting refractive-index data with the Sellmeier dispersion formula. Appl Opt 23(24):4477–4485

    Article  CAS  Google Scholar 

  36. Wiechmann S, Müller J (2009) Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon. Thin Solid Films 517(24):6847–6849

    Article  CAS  Google Scholar 

  37. Singh SP, Pal K, Tarafder A, Das M, Annapurna K, Karmakar B (2010) Effects of SiO2 and TiO2 fillers on thermal and dielectric properties of eco-friendly bismuth glass microcomposites of plasma display panels. Bull Mater Sci 33(1):33–41

    Article  CAS  Google Scholar 

  38. Ye, W N, Sun, R, Michel, J, Eldada, L, Pant D & Kimerling, L C (2008). 5th IEEE international conference on group IV photonics, Sorrento, Italy, 401

  39. Iliew R, Etrich C, Pertsch T, Lederer F, Staliunas K (2008) Subdiffractive all-photonic crystal Fabry-Perot resonators, opt. Letters 33(22):2695

    CAS  Google Scholar 

  40. El-Khozondar HJ, Shabat MM, Abu Tair G, Abadla M (2007) Thermal-stress effects on nonlinear thin film waveguide sensors. J Phys Chem Solids 8(2):260–264

    CAS  Google Scholar 

  41. Mehaney A (2019) Biodiesel physical properties detection using one-dimensional Phononic crystal sensor. Acoust Phys 65(4):374–378

    Article  CAS  Google Scholar 

  42. Tong K, Cui W, Yan G, Li Z (2007) Study on temperature property of band structures in one-dimensional photonic crystals. Optoelectr Lett 3(6):444–447

    Article  Google Scholar 

  43. Kumar, A, Kumar, V, Suthar, B, Bhargava, A, Singh, K S, & Ojha, S P (2012). Wide range temperature sensors based on one-dimensional photonic crystal with a single defect, Int J Microw Sci Techn, 1–5

  44. Liu Q, Li S, Chen H, Fan Z, Li J (2015) Photonic crystal Fiber temperature sensor based on coupling between liquid-Core mode and defect mode. IEEE Photon J 7(2):1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein A. Elsayed.

Ethics declarations

Conflict of Interest

Authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadla, M.M., Elsayed, H.A. & Mehaney, A. Novel Design for the Temperature Sensing Using Annular Photonic Crystals. Silicon 13, 4737–4745 (2021). https://doi.org/10.1007/s12633-020-00788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00788-5

Keywords

Navigation