Skip to main content
Log in

Determination of Electrical and Photoelectrical Properties of Schottky Diodes Made Using New Chitin Derivatives Synthesized as Interface Layer

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

5-(2,4-dichlorophenyl)-2-furoic acid and anthraquinone-2-carboxylic acid were reacted separately with chitin. The synthesized products were characterized by various spectroscopic methods (FTIR, NMR and XRD) and were abbreviated as C524D2FA and CA2CA, respectively. The surface of the chitin derivatives, pulverized by pounding in mortar, was examined by SEM technique. Then, two different diodes were made by using these chitin derivatives as an interface layer. Al as metal and p-Si as semiconductor were used in the construction of the diodes. Some important properties of these diodes made were determined both in the dark and under an illumination of 100 mW/cm2. The Al/CA2CA/p-Si diode has been found to be more ideal than the Al/C524D2FA/p-Si diode conducted in this study and many other diodes made using Al and p-Si in other studies up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksoy Ö, Uzun İ, Topal G, Ocak YS, Çelik Ö, Batibay D (2019) Schottky diodes based on the new chitin derivatives. Polym Sci Ser A 61:242–252

    Article  Google Scholar 

  2. Kahng D (1963) Conduction properties of the Au-n-type—Si Schottky barrier. Solid State Electron 6:281–295

    Article  Google Scholar 

  3. Sze SM, Crowell CR, Kahng D (1964) Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers. J Appl Phys 35:2534–2536

    Article  Google Scholar 

  4. Padovani FA, Sumner GG (1965) Experimental study of gold‐gallium arsenide Schottky barriers. J Appl Phys 36:3744–3747

    Article  CAS  Google Scholar 

  5. Cowley AM (1966) Depletion capacitance and diffusion potential of gallium phosphide Schottky‐barrier diodes. J Appl Phys 37:3024–3032

    Article  CAS  Google Scholar 

  6. Saxena AN (1969) Forward current-voltage characteristics of Schottky barriers on n-type silicon. Surf Sci 13:151–171

    Article  CAS  Google Scholar 

  7. Yamamoto N, Tonomura S, Matsuoka T, Tsubomura H (1980) A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components. Surf Sci 92:400–406

    Article  CAS  Google Scholar 

  8. Dascalu D, Brezeanu G, Dan PA, Dima C (1981) Modelling electrical behaviour of nonuniform Al-Si Schottky diodes. Solid State Electron 24:897–904

  9. Srivastava AK, Arora BM (1981) Effect of annealing on the Richardson constant of Al-GaAs Schottky diodes. Solid State Electron 24:1049–1052

    Article  CAS  Google Scholar 

  10. Dharmadasa IM, Roberts GG, Petty MC (1982) Electrical properties of Au/n-CdTe Schottky diodes. J Phys D Appl Phys 15:901–910

    Article  CAS  Google Scholar 

  11. Hattori K, Yuito M, Amakusa T (1982) Electrical characteristics of the InSb Schottky diode. Phys Status Solidi A 73:157–164

    Article  CAS  Google Scholar 

  12. Sa CJ, Meiners LG (1986) Schottky barrier heights of Hg, Cd, and Zn on n-type InP(100). Appl Phys Lett 48:1796–1798

    Article  CAS  Google Scholar 

  13. Altındal Ş, Karadeniz S, Tuğluoğlu N, Tataroğlu A (2003) The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid State Electron 47:1847–1854

  14. Çakar M, Temirci C, Türüt A (2004) The Schottky barrier height of the rectifying Cu/pyronine-B/p-Si, Au/pyronine-B/p-Si, Sn/pyronine-B/p-Si and Al/pyronine-B/p-Si contacts. Synth Met 142:177–180

    Article  CAS  Google Scholar 

  15. Aydoğan Ş, Sağlam M, Türüt A (2005) On the some electrical properties of the non-ideal PPy/p-Si/Al structure. Polymer 46:10982–10988

    Article  CAS  Google Scholar 

  16. Zeyrek S, Altındal Ş, Yüzer H, Bülbül MM (2006) Current transport mechanism in Al/Si3N4/p-Si (MIS) Schottky barrier diodes at low temperatures. Appl Surf Sci 252:2999–3010

    Article  CAS  Google Scholar 

  17. Çakar M, Yıldırım N, Karataş Ş, Temirci C, Türüt A (2006) Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101/n-Si and Sn/rhodamine-101/p-Si Schottky barrier diodes. J Appl Phys 100:074505

  18. Dökme İ, Altındal Ş (2006) On the intersecting behaviour of experimental forward bias current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes at low temperatures. Semicond Sci Technol 21:1053–1058

  19. Akkılıç K, Aydın ME, Uzun İ, Kılıçoğlu T (2006) The calculation of electronic parameters of an Ag/chitin/n-Si Schottky barrier diode. Synth Met 156:958–962

    Article  CAS  Google Scholar 

  20. Aydin ME, Yakuphanoglu F (2007) Molecular control over Ag/p-Si diode by organic layer. J Phys Chem Solids 68:1770–1773

    Article  CAS  Google Scholar 

  21. Yakuphanoglu F (2007) Electronic and photovoltaic properties of Al/p-Si/copper phthalocyanine photodiode junction barrier. Sol Energy Mater Sol Cells 91:1182–1186

    Article  CAS  Google Scholar 

  22. Özer M, Yıldız DE, Altındal Ş, Bülbül MM (2007) Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes. Solid State Electron 51:941–949

    Article  CAS  Google Scholar 

  23. Akkılıç K, Uzun İ, Kılıçoğlu T (2007) The calculation of electronic properties of an Ag/chitosan/n-Si Schottky barrier diode. Synth Met 157:297–302

    Article  CAS  Google Scholar 

  24. Yakuphanoglu F (2007) Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode. Synth Met 157:859–862

    Article  CAS  Google Scholar 

  25. Güllü Ö, Türüt A (2008) Photovoltaic and electronic properties of quercetin/p-InP solar cells. Sol Energy Mater Sol Cells 92:1205–1210

    Article  CAS  Google Scholar 

  26. Akkılıç K, Ocak YS, Kılıçoğlu T, İlhan S, Temel H (2010) Calculation of current–voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Curr Appl Phys 10:337–341

    Article  Google Scholar 

  27. Yakuphanoglu F, Ocak YS, Kılıçoğlu T, Farooq WA (2011) Interface control and photovoltaic properties of n-type silicon/metal junction by organic dye. Microelectron Eng 88:2951–2954

    Article  CAS  Google Scholar 

  28. Kumar AA, Reddy VR, Janardhanam V, Seo M-W, Hong H, Shin K-S, Choi C-J (2012). Electrical properties of Pt/n-Ge Schottky contact modified using copper phthalocyanine (CuPc) interlayer. J Electrochem Soc 159:H33–H37

  29. Aksoy Ö, Uzun İ, Topal G, Ocak YS, Çelik Ö, Batibay D (2018) Synthesis, characterization, and Schottky diode applications of low-cost new chitin derivatives. Polym Bull 75:2265–2283

    Article  CAS  Google Scholar 

  30. Aksoy Ö, Uzun İ, Topal G, Çelik Ö, Ocak YS, Batibay D (2019) New chitin derivatives and their Schottky diodes: Synthesis and characterization. Polym Polym Compos 27:476–487

    CAS  Google Scholar 

  31. Uzun İ, Aksoy Ö, Topal G, Çelik Ö, Ocak YS (2020) Evaluation of synthesized new chitin derivatives in Schottky diode constructions. Polym Plast Technol Mater 59:1218–1232

    CAS  Google Scholar 

  32. Uzun İ, Orak İ, Karakaplan M, Karaer Yağmur H, Pınar Yalçın Ş, Akkılıç K (2020) Characterization of synthesized new chitin derivatives and Schottky diodes made using these derivatives. J Mater Sci: Mater Electron https://doi.org/10.1007/s10854-020-04530-0

  33. Uzun İ, Güzel F (2000) Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk J Chem 24:291–297

  34. Uzun İ, Güzel F (2004) Kinetics and thermodynamics of the adsorption of some dyestuffs and p-nitrophenol by chitosan and MCM-chitosan from aqueous solution. J Colloid Interface Sci 274:398–412

    Article  CAS  PubMed  Google Scholar 

  35. Uzun İ, Güzel F (2004). External mass transfer studies during the adsorptions of some dyestuffs and p-nitrophenol onto chitosan from aqueous solution. Turk J Chem 28:731–740

  36. Uzun İ, Güzel F (2005). Rate studies on the adsorption of some dyestuffs and p-nitrophenol by chitosan and monocarboxymethylated(mcm)-chitosan from aqueous solution. J Hazard Mater B118:141–154

  37. Uzun İ (2006) Kinetics of the adsorption of reactive dyes by chitosan. Dyes Pigments 70:76–83

    Article  CAS  Google Scholar 

  38. Akkaya G, Uzun İ, Güzel F (2007) Kinetics of the adsorption of reactive dyes by chitin. Dyes Pigments 73:168–177

    Article  CAS  Google Scholar 

  39. Akkaya G, Uzun İ, Güzel F (2009) Adsorption of some highly toxic dyestuffs from aqueous solution by chitin and its synthesized derivatives. Desalination 249:1115–1123

    Article  CAS  Google Scholar 

  40. Karaer H, Uzun İ (2013) Adsorption of basic dyestuffs from aqueous solution by modified chitosan. Desalin Water Treat 51:2294–2305

    Article  CAS  Google Scholar 

  41. Roosen J, Binnemans K (2014) Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. J Mater Chem A 2:1530–1540

    Article  CAS  Google Scholar 

  42. Lafontaine PJ, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

  43. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  CAS  PubMed  Google Scholar 

  44. Sid Ahmed A, Ezziyyani M, Pérez Sánchez C, Candela ME (2003). Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol 109:633–637

  45. Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stab 59:117–120

    Article  CAS  Google Scholar 

  46. Mao J, Zhao L, de Yao K, Shang Q, Yang G, Cao Y (2003) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64:301–308

    Article  PubMed  CAS  Google Scholar 

  47. Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y (2004) A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed 15:25–40

    Article  CAS  PubMed  Google Scholar 

  48. Aoyagi S, Onishi H, Machida Y (2007) Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int J Pharm 330:138–145

    Article  CAS  PubMed  Google Scholar 

  49. Sudheesh Kumar PT, Praveen G, Raj M, Chennazhi KP, Jayakumar R (2014) Flexible, micro-porous chitosan–gelatin hydrogel/nanofibrin composite bandages for treating burn wounds. RSC Adv 4:65081–65087

    Article  CAS  Google Scholar 

  50. Yamamoto C, Hayashi T, Okamoto Y (2003) High-performance liquid chromatographic enantioseparation using chitin carbamate derivatives as chiral stationary phases. J Chromatogr A 1021:83–91

    Article  CAS  PubMed  Google Scholar 

  51. Libio IC, Demori R, Ferrão MF, Lionzo MIZ, da Silveira NP (2016) Films based on neutralized chitosan citrate as innovative composition for cosmetic application. Mater Sci Eng C 67:115–124

    Article  CAS  Google Scholar 

  52. Thacharodi D, Rao KP (1995) Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 16:145–148

    Article  CAS  PubMed  Google Scholar 

  53. Gupta KC, Kumar MNVR (2000) Drug release behavior of beads and microgranules of chitosan. Biomaterials 21:1115–1119

    Article  CAS  PubMed  Google Scholar 

  54. Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57

    Article  CAS  PubMed  Google Scholar 

  55. Yao KD, Yin YJ, Xu MX, Wang YF (1995) Investigation of pH-sensitive drug delivery system of chitosan/gelatin hybrid polymer network. Polym Int 38:77–82

    Article  CAS  Google Scholar 

  56. Muzzarelli RAA (1996) Chitosan-based dietary foods. Carbohydr Polym 29:309–316

    Article  CAS  Google Scholar 

  57. Spagna G, Pifferi PG, Rangoni C, Mattivi F, Nicolini G, Palmonari R (1996) The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res Int 29:241–248

    Article  CAS  Google Scholar 

  58. El Ghaouth A, Arul J, Ponnampalam R, Boulet M (1991) Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci 56:1618–1620

    Article  Google Scholar 

  59. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060–2065

    Article  CAS  PubMed  Google Scholar 

  60. Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm 180:185–193

    Article  CAS  PubMed  Google Scholar 

  61. Jin J, Lee D, Im H-G, Han YC, Jeong EG, Rolandi M, Choi KC, Bae B-S (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28:5169–5175

  62. Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460

    Article  CAS  Google Scholar 

  63. Stephan AM, Kumar TP, Kulandainathan MA, Lakshmi NA (2009) Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. J Phys Chem B 113:1963–1971

  64. Angulakhsmi N, Thomas S, Nair JR, Bongiovanni R, Gerbaldi C, Stephan AM (2013) Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for lithium batteries. J Power Sources 228:294–299

    Article  CAS  Google Scholar 

  65. Liu XD, Nishi N, Tokura S, Sakairi N (2001) Chitosan coated cotton fiber: preparation and physical properties. Carbohydr Polym 44:233–238

    Article  CAS  Google Scholar 

  66. Romanova OA, Grigor’ev TE, Goncharov ME, Rudyak SG, Solov’yova EV, Krasheninnikov ST, Saprykin VP, Sytina EV, Chvalun SN, Pal’tsev MA, Panteleev AA (2015) Chitosan as a modifying component of artificial scaffold for human skin tissue engineering. Bull Exp Biol Med 159:557–566

    Article  CAS  PubMed  Google Scholar 

  67. Nagahama H, New N, Jayakumar R, Koiwa S, Furuike T, Tamura H (2008) Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr Polym 73:295–302

    Article  CAS  Google Scholar 

  68. Alsarra IA (2009) Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol 45:16–21

    Article  CAS  PubMed  Google Scholar 

  69. Yusof NLBM, Wee A, Lim LY, Khor E (2003) Flexible chitin films as potential wound-dressing materials: wound model studies. J Biomed Mater Res A 66:224–232

    Article  PubMed  CAS  Google Scholar 

  70. Kawai T, Yamada T, Yasukawa A, Koyama Y, Muneta T, Takakuda K (2009). Biological fixation of fibrous materials to bone using chitin/chitosan as a bone formation accelerator. J Biomed Mater Res B Appl Biomater 88:264–270

  71. Rashid I, Daraghmeh N, Al-Remawi M, Leharne SA, Chowdhry BZ, Badwan A (2009) Characterization of chitin–metal silicates as binding superdisintegrants. J Pharm Sci 98:4887–4901

    Article  CAS  PubMed  Google Scholar 

  72. Fernandez JG, Mills CA, Samitier J (2009) Complex microstructured 3D surfaces using chitosan biopolymer. Small 5:614–620

  73. Orrego CE, Salgado N, Valencia JS, Giraldo GI, Giraldo OH, Cardona CA (2010) Novel chitosan membranes as support for lipases immobilization: Characterization aspects. Carbohydr Polym 79:9–16

    Article  CAS  Google Scholar 

  74. Tsutsumi Y, Koga H, Qi Z-D, Saito T, Isogai A (2014) Nanofibrillar chitin aerogels as renewable base catalysts. Biomacromolecules 15:4314–4319

  75. Yang D, Wang Y, He L, Li H (2016) Carboxyl-functionalized ionic liquid assisted preparation of flexible, transparent, and luminescent chitosan films as vapor luminescent sensor. ACS Appl Mater Interfaces 8:19709–19715

    Article  CAS  PubMed  Google Scholar 

  76. Robles E, Salaberria AM, Herrera R, Fernandes SCM, Labidi J (2016) Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr Polym 144:41–49

    Article  CAS  PubMed  Google Scholar 

  77. Bethe HA (1942) Theory of the boundary layer of crystal rectifiers. MIT radiation laboratory report, no: 43–12, Massachusetts

  78. Colinge J-P, Colinge CA (2002) Physics of semiconductor devices. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  79. Schubert EF (2006) Light-emitting diodes. Cambridge University Press, New York

    Book  Google Scholar 

  80. Luque A, Hegedus S (2011) Handbook of photovoltaic science and engineering. John Wiley & Sons, Ltd., United Kingdom

    Google Scholar 

  81. Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5053

    Article  CAS  Google Scholar 

  82. Lee TC, Fung S, Beling CD, Au HL (1992) A systematic approach to the measurement of ideality factor, series resistance, and barrier height for Schottky diodes. J Appl Phys 72:4739–4742

    Article  Google Scholar 

  83. Kolb WM (1982) Curve fitting for programmable calculators. IMTEC, Maryland

    Google Scholar 

  84. Halder NN, Biswas P, Kundu S, Banerji P (2015) Au/p-Si Schottky junction solar cell: Effect of barrier height modification by InP quantum dots. Sol Energy Mater Sol Cells 132:230–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by DÜBAP with a project with number ZGEF.17.021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhan Uzun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, İ., Orak, İ., Yağmur, H.K. et al. Determination of Electrical and Photoelectrical Properties of Schottky Diodes Made Using New Chitin Derivatives Synthesized as Interface Layer. Silicon 13, 4703–4713 (2021). https://doi.org/10.1007/s12633-020-00779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00779-6

Keywords

Navigation