Skip to main content

Advertisement

Log in

Beneficial Effects of Silicon (Si) on Sea Barley (Hordeum marinum Huds.) under Salt Stress

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon (Si) plays an important role in providing beneficial effects on plant growth and yield, especially under stressful environments such as salinity.

The objective of this work is to study the effects of a fertilizer based on silicon (Na2SiO3 synthesized from Tunisian silica sand) on sea barley (Hordeum marinum Huds.) under salt stress. Due to its forage potentialities, this species presents a very interesting capacity for the rehabilitation of non-productive marginal areas.

Forty-two-day-old H. marinum plants were exposed to three concentrations of Na2SiO3 (0, 1, or 2 mM) in the absence or presence of salt (0 or 150 mM NaCl). The examination of the growth parameters, water status, lipid peroxidation, photosynthetic gas exchange, photosynthetic pigment contents, and chlorophyll fluorescence proved that silicon is a great interest support for the remediation of the deleterious effects of salt stress. Therefore, our fertilizer can be considered as an effective solution to cope with salt stress and promote the development of marginal lands. Taking into consideration its high efficiency and its low production cost, this product can compete with other fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  2. Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38. https://doi.org/10.1111/plb.12884

    Article  CAS  PubMed  Google Scholar 

  3. Abdelly C, Debez A, Smaoui A, Grignon C (2011) Halophyte-fodder species association may improve nutrient availability and biomass production of the Sabkha ecosystem. Sabkha ecosystems. Springer, Dordrecht, pp 85–94

    Google Scholar 

  4. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon's role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107. https://doi.org/10.1146/annurev-phyto-080516-035312

    Article  CAS  PubMed  Google Scholar 

  5. Frew A, Weston LA, Reynolds OL, Gurr GM (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121:1265–1273. https://doi.org/10.1093/aob/mcy009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. J New Phytol 221:67–85. https://doi.org/10.1111/nph.15343

    Article  Google Scholar 

  7. Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture. Springer, Dordrecht

    Book  Google Scholar 

  8. Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch Agron Soil Sci 58:247–256. https://doi.org/10.1080/03650340.2010.518959

    Article  CAS  Google Scholar 

  9. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411. https://doi.org/10.3389/fpls.2017.00411

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ahmad B (2014) Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. J Integr Agric 13:1889–1899. https://doi.org/10.1016/S2095-3119(13)606395

    Article  CAS  Google Scholar 

  11. Hussain SA, Farooq MA, Akhtar J, Saqib ZA (2018) Silicon-mediated growth and yield improvement of sunflower (Helianthus annus L.) subjected to brackish water stress. Acta Physiol Plant 40:180. https://doi.org/10.1007/s11738-018-2755-z

    Article  CAS  Google Scholar 

  12. Parveen N, Ashraf M (2010) Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak J Bot 42:1675–1684

    CAS  Google Scholar 

  13. Khan WUD, Aziz T, Hussain I, Ramzani PMA, Reichenauer TG (2017) Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Arch Agron Soil Sci 63:599–611. https://doi.org/10.1080/03650340.2016.1233322

    Article  CAS  Google Scholar 

  14. Hafsi C, Lakhdhar A, Rabhi M, Debez A, Abdelly C, Ouerghi Z (2007) Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of Hordeum maritimum. J Plant Nutr Soil Sci 170:469–473. https://doi.org/10.1002/jpln.200625203

    Article  CAS  Google Scholar 

  15. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition technical communication no. 22. Commonwealth Bureau of Horticultural and Plantation Crops, east Malling, Kent, UK

  16. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, In: Methods in enzymology. Pp 350–382

  17. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. https://doi.org/10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  18. Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x

    Article  PubMed  Google Scholar 

  19. Zorrig W, Rouached A, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2010) Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J Plant Physiol 167:1239–1247. https://doi.org/10.1016/j.jplph.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  20. Zorrig W, Cornu JY, Maisonneuve B, Rouached A, Sarrobert C, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2019) Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). Plant Physiol Biochem 67–75:67–75. https://doi.org/10.1016/j.plaphy.2019.01.011

    Article  CAS  Google Scholar 

  21. Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80. https://doi.org/10.3389/fpls.2019.00080

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zorrig W, Attia H, Msilini N, Ouhibi C, Lachaâl M, Ouerghi Z (2013) Photosynthetic behaviour of Arabidopsis thaliana (pa-1 accession) under salt stress. Afr J Biotechnol 12:4594–4602. https://doi.org/10.5897/AJB10.2423

    Article  CAS  Google Scholar 

  23. Medini W, Farhat N, Al-Rawi S, Mahto H, Qasim H, Ben-Halima E, Bessrour M, Chibani F, Abdelly C, Fettke J, Rabhi M (2019) Do carbohydrate metabolism and partitioning contribute to the higher salt tolerance of Hordeum marinum compared to Hordeum vulgare. Acta Physiol Plant 41:190. https://doi.org/10.1007/s11738-019-2983-x

    Article  CAS  Google Scholar 

  24. Hmidi D, Messedi D, Corratgé-Faillie C, Marhuenda T, Fizames C, Zorrig W, Abdelly C, Sentenac H, Véry AA (2019) Investigation of Na+ and K+ transport in halophytes: functional analysis of the HmHKT2;1 transporter from Hordeum maritimum and expression under saline conditions. Plant Cell Physiol 60:2423–2435. https://doi.org/10.1093/pcp/pcz136

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Abdallah S, Zorrig W, Amyot L, Renaud J, Hannoufa A, Lachâal M, Karray-Bouraoui N (2019) Potential production of polyphenols, carotenoids and glycoalkaloids in Solanum villosum mill Under salt stress. Biologia. 74:309–324. https://doi.org/10.2478/s11756-018-00166-y

    Article  CAS  Google Scholar 

  26. Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. https://doi.org/10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  27. Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.Plant. Cell Environ 39:245–258. https://doi.org/10.1111/pce.12521

    Article  CAS  Google Scholar 

  28. Flam-Shepherd R, Huynh WQ, Coskun D, Hamam AM, Britto DT, Kronzucker HJ (2018) Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. J Exp Bot 69:1679–1692. https://doi.org/10.1093/jxb/erx460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saleh J, Najafi N, Oustan S, Ghasemi-Golezani K, Aliasghrzad N (2019) Silicon affects Rice growth, superoxide dismutase activity and concentrations of chlorophyll and Proline under different levels and sources of soil salinity. Silicon 11:2659–2667. https://doi.org/10.1007/s12633-018-0057-0

    Article  CAS  Google Scholar 

  30. Yan G, Fan X, Peng M, Yin C, Xiao Z, Liang Y (2020) Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front Plant Sci 11:260. https://doi.org/10.3389/fpls.2020.00260

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ali A, Ul Haq T, Mahmood R, Jaan M, Abbas MN (2019) Stimulating the anti-oxidative role and wheat growth improvement through silicon under salt stress. Silicon 11:2403–2406. https://doi.org/10.1007/s12633-015-9378-4

    Article  CAS  Google Scholar 

  32. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. https://doi.org/10.1016/j.plantsci.2004.04.020

    Article  CAS  Google Scholar 

  33. Wasti S, Manaa A, Mimouni H, Nsairi A, Ibtissem M, Gharbi E, Gautier H, Ben Ahmed H (2017) Exogenous application of calcium silicate improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. J Plant Nutr 40:673–684. https://doi.org/10.1080/01904167.2016.1250908

    Article  CAS  Google Scholar 

  34. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants, In: studies in plant science, Elsevier, pp. 17–39

  35. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  36. Sattar A, Cheema MA, Abbas T, Sher A, Ijaz M, Hussain M (2017) Separate and combined effects of silicon and selenium on salt tolerance of wheat plants. Russ J Plant Physiol 64:341–348. https://doi.org/10.1134/S1021443717030141

    Article  CAS  Google Scholar 

  37. Delavar K, Ghanati F, Behmanesh M, Zare-Maivan H (2018) Physiological parameters of silicon-treated maize under salt stress conditions. Silicon 10:2585–2592. https://doi.org/10.1007/s12633-018-9794-3

    Article  CAS  Google Scholar 

  38. Ouerghi Z, Cornic G, Roudani M, Ayadi A, Brulfert J (2000) Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. J Plant Physiol 156:335–340. https://doi.org/10.1016/S0176-1617(00)80071-1

    Article  CAS  Google Scholar 

  39. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565. https://doi.org/10.1046/j.1365-3040.1999.00418.x

    Article  CAS  Google Scholar 

  40. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121. https://doi.org/10.1016/j.plaphy.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  41. Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 3511:3099–3107. https://doi.org/10.1007/s11738-013-1343-5

    Article  CAS  Google Scholar 

  42. Al-Aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115. https://doi.org/10.1081/PLN-200034641

    Article  CAS  Google Scholar 

  43. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence a practical guide. J Exp Bot 51:659–668. https://doi.org/10.1093/jxb/51.345.659

    Article  CAS  PubMed  Google Scholar 

  44. Moinuddin M, Gulzar S, Hameed A, Gul B, Khan MA, Edwards GE (2017) Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan. Photosynth Res 131:51–64. https://doi.org/10.1007/s11120-016-0296-0

    Article  CAS  PubMed  Google Scholar 

  45. Perez CEA, Rodrigues FÁ, Moreira WR, DaMatta FM (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 104:143–149. https://doi.org/10.1094/PHYTO-06-13-0163-R

    Article  CAS  PubMed  Google Scholar 

  46. Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224. https://doi.org/10.1023/a:1004526604913

    Article  CAS  Google Scholar 

  47. Zhang W, Xie Z, Wang L, Li M, Lang D, Zhang X (2017) Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. J Plant Res 130:611–624. https://doi.org/10.1007/s10265-017-0927-3

    Article  CAS  PubMed  Google Scholar 

  48. Liu B, Soundararajan P, Manivannan A (2019) Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants. 8:307. https://doi.org/10.3390/plants8090307

    Article  CAS  PubMed Central  Google Scholar 

  49. Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99(282):289–289. https://doi.org/10.1016/j.ecoleng.2016.11.060

    Article  Google Scholar 

  50. Pereira TS, Pereira TS, Figueredo de Carvalho Souza CL, Lima EJA, Batista BL, da Silva Lobato AK (2017) Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiol Mol Biol Plants 24(1):99–114. https://doi.org/10.1007/s12298-017-0494-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khan A, Bilal S, Khan AL, Imran M, Al-Harrasi A, Al-Rawahi A, Lee I-J (2020) Silicon-mediated alleviation of combined salinity and cadmium stress in date palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotox Environ Safe 188:109885. https://doi.org/10.1016/j.ecoenv.2019.109885

    Article  CAS  Google Scholar 

  52. Jang SW, Kim Y, Khan AL, Na CI, Lee IJ (2018) Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biol 18:4. https://doi.org/10.1186/s12870-017-1216-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153. https://doi.org/10.1146/annurev-arplant-050213-035759

    Article  CAS  PubMed  Google Scholar 

  54. Elkhouni A, Rabhi M, Ivanov AG, Krol M, Zorrig W, Smaoui A, Abdelly C, Huner NP (2018) Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions. Plant Biol 20:415–425. https://doi.org/10.1111/plb.12684

    Article  CAS  PubMed  Google Scholar 

  55. Pavlovic J, Samardzic J, Maksimović V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol 198:1096–1107. https://doi.org/10.1111/nph.12213

    Article  CAS  PubMed  Google Scholar 

  56. Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333. https://doi.org/10.1007/s11104-011-0749-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted in the Laboratory of Extremophile Plants (LPE: Laboratoire des Plantes Extrêmophiles, Tunisia) of the Center of Biotechnology of Borj-Cedria (CBBC: Centre de Biotechnologie de Borj-Cédria, Tunisia), and supported by the Tunisian Ministry of Higher Education and Scientific Research (LR19CBBC02). Part of the work was also supported by the Tunisian-French PHC MAGHREB 2019 network (Partenariat Hubert CURIEN MAGHREB 2019 no. 41482RL - 19MAG41). We thank the staff of the Center of Biotechnology of Borj-Cedria (CBBC) for technical and administrative supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Zorrig.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laifa, I., Hajji, M., Farhat, N. et al. Beneficial Effects of Silicon (Si) on Sea Barley (Hordeum marinum Huds.) under Salt Stress. Silicon 13, 4501–4517 (2021). https://doi.org/10.1007/s12633-020-00770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00770-1

Keywords

Navigation