Skip to main content
Log in

New Hydroxylated Cyclic and Acyclic Silylenes Via DFT

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We have scrutinized thirteen new derivatives of cyclic and acyclic silylenes and compared their structural and thermodynamic parameters, at M06-2X/6–311++G** level of theory. The cyclic three- and five-membered silylenes include (2-hydroxy)cyclopropasilylene-2-ene (1), (2,3-dihydroxy)cyclopropasilylene-2-ene (2), (2-hydroxy)cyclopentasilylene-2,4-diene (3), and (2,5-dihydroxy)cyclopentasilylene-2,4-diene (4). The acyclic isomers consist of hydroxypropa-2-silylene (1), (1,3-dihydroxy)propa-2-silylene (2), (2-hydroxy)penta-3-silylene (3), (2-hydroxy)penta-3-silylene-1,4-diene (3), (2,4-dihydroxy)penta-3-silylene (4), and (2,4-dihydroxy)penta-3-silylene-1,4-diene (4). In addition, keto forms of 3 (3K) and 4 (4K1 and 4K2) along with protonated forms of silylenes (1H, 1H, 2H, 2H, 3H, 3H, 3H, 3K-H, 4H, 4H, 4H, 4K1-H, and 4K2-H) are investigated for determining their proton affinities (PAs) and intramolecular hydrogen bondings (IHBs). The results show that 4 shows the lowest singlet-triplet energy gap (ΔEs-t = −19.03 eV) and band gap (ΔEH-L = −2.01 eV) and the highest nucleophilicity (N = 4.02 eV), chemical potential (μ = −3.38 eV), and PA (382.85 kcal/mol) which correlates with its strongest IHB. Atoms in molecules (AIM) analysis represents the highest electron density (ρ(r) = 0.033) at bond critical point (BCP) of IHB in 4. The natural bond orbital (NBO) analysis shows the highest value of second-order perturbation stabilization energy (E2 = 7.85 kcal/mol) for 4 which is in consistent with the lowest bond length of IHB (1.84 Å). Furthermore, the infrared (IR) spectroscopy indicates the lowest vibrational frequency of O-H bond νOHOH= 3542.87 cm−1) which verifies the strong IHB of 4. The overall order of the IHB strength is 4 > 4 > 4H > 4H > 2 > 2H.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jutzi P, Schubert U (2004) Silicon chemistry: from the atom to extended systems. Angew Chemie 43(23):2990

  2. Denk M, Lennon R, Hayashi R, West R, Belyakov AV, Verne HP, Haaland A, Wagner M, Metzler N (1994) Synthesis and Structure of a Stable Silylene. J Am Chem Soc 116(6):2691–2692

    Article  CAS  Google Scholar 

  3. Haaf M, Schmedake TA, West R (2000) Stable Silylenes. Acc Chem Res 33(10):704–714

    Article  CAS  Google Scholar 

  4. Hadlington TJ, Abdalla JAB, Tirfoin R, Aldridge S, Jones C (2016) Stabilization of a two-coordinate, acyclic diaminosilylene (ADASi): completion of the series of isolable diaminotetrylenes, :E(NR2)2(E = group 14 element). Chem Commun 52(8):1717–1720

    Article  CAS  Google Scholar 

  5. Schmedake TA, Haaf M, Paradise BJ, Millevolte AJ, Powell DR, West R (2001). J Organomet Chem 636(1):17–25

    Article  CAS  Google Scholar 

  6. Gehrhus B, Lappert MF (2001). J Organomet Chem 617:209–223

    Article  Google Scholar 

  7. Ayoubi-Chianeh M, Kassaee MZ (2019) Novel silicon super bases at DFT level of theory: effects of fused benzene rings on the basicity of 2,4,6-cycloheptatrienesilylene. Res Chem Intermed 45:4677–4691

    Article  CAS  Google Scholar 

  8. Ayoubi-Chianeh M, Kassaee MZ, Ashenagar S, Cummings PT (2019) J Phys Org Chem 32(8):e3956

  9. Ayoubi-Chianeh M, Kassaee MZ 2019 J Phys Org Chem 32(10):e3988

  10. Cote DR, Van Nguyen S, Stamper AK, Armbrust DS, Tobben D, Conti RA, Lee GY (1999). IBM J Res Dev 43(1.2):5–38

    Article  CAS  Google Scholar 

  11. Heaven MW, Metha GF, Buntine MA (2001). J Phys Chem A 105(7):1185–1196

    Article  CAS  Google Scholar 

  12. Tamao K, Kobayashi M, Matsuo T, Furukawa S, Tsuji H (2012) The first observation of electroluminescence from di(2-naphthyl)disilene, an Si Si double bond-containing π-conjugated compound. Chem Commun 48(7):1030–1032

    Article  CAS  Google Scholar 

  13. Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999). J Phys Chem A 103(41):8213–8221

    Article  CAS  Google Scholar 

  14. Luke BT, Pople JA, Krogh-Jespersen M-B, Apeloig Y, Karni M, Chandrasekhar J, Schleyer P v R (1986). J Am Chem Soc 108(2):270–284

    Article  CAS  Google Scholar 

  15. Kalcher J, Sax AF (1992) Singlet-triplet splittings and electron affinities of some substituted silylenes. J Mol Struct Theochem 253:287–302

    Article  Google Scholar 

  16. Krogh-Jespersen K (1985) Structural and energetic features of fully substituted silylenes, disilenes, and silylsilylenes (SiX2, X2SiSiX2, and XSiSiX3; X = lithium, methyl, and fluorine). J Am Chem Soc 107(3):537–543

    Article  CAS  Google Scholar 

  17. Yoshida M, Tamaoki N (2002) DFT Study on Triplet Ground State Silylenes Revisited: The Quest for the Triplet Silylene Must Go On. Organometallics 21(13):2587–2589

    Article  CAS  Google Scholar 

  18. Asay M, Inoue S, Driess M (2011) Aromatic Ylide-Stabilized Carbocyclic Silylene. Angew Chemie Int Ed 50(41):9589–9592

    Article  CAS  Google Scholar 

  19. Oláh J, Veszprémi T, De Proft F, Geerlings P (2007). J Phys Chem A 111(42):10815–10823

    Article  Google Scholar 

  20. Rekken BD, Brown TM, Fettinger JC, Tuononen HM, Power PP (2012) Isolation of a Stable, Acyclic, Two-Coordinate Silylene. J Am Chem Soc 134(15):6504–6507

    Article  CAS  Google Scholar 

  21. Biswas AK, Lo R, Ganguly B (2013). J Phys Chem. A 117(14):3109–3117

    Article  CAS  Google Scholar 

  22. Kosa M, Karni M, Apeloig Y (2004) How to Design Linear Allenic-Type Trisilaallenes and Trigermaallenes. J Am Chem Soc 126(34):10544–10545

    Article  CAS  Google Scholar 

  23. Apeloig Y, Pauncz R, Karni M, West R, Steiner W, Chapman D (2003) Why Is Methylene a Ground State Triplet while Silylene Is a Ground State Singlet?†. Organometallics 22(16):3250–3256

    Article  CAS  Google Scholar 

  24. Belzner J, Dehnert U, Ihmels H (2001) Reactions of a cyclotrisilane with styrene derivatives and diarylacetylenes—evidence for nucleophilic silylenes. Tetrahedron 57(3):511–517

    Article  CAS  Google Scholar 

  25. Dubois I, Herzberg G, Verma RD (1967). J Chem Phys 47(10):4262–4263

    Article  CAS  Google Scholar 

  26. Ayoubi-Chianeh M, Kassaee KZ (2020) J Chinese Chem Soc 67(9):1544–1551

  27. Ayoubi-Chianeh M, Kassaee MZ n.d. J Phys Org Chem e4074

  28. Öztürk N, Özdemir T, Alpaslan YB, Gokce H, Alpaslan G (2018). Bilge Int J Sci Technol Res 2(1):56–73

    Article  Google Scholar 

  29. Alvareda E, Denis PA, Iribarne F, Paulino M (2016) Bond dissociation energies and enthalpies of formation of flavonoids: A G4 and M06-2X investigation. Comput Theor Chem 1091:18–23

    Article  CAS  Google Scholar 

  30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993). J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  31. Schmidt MW, Gordon MS (2017) J Phys Chem A 121(41):8003–8011

  32. Bryantsev VS, Diallo MS, van Duin ACT, Goddard III WA (2009) Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters. J Chem Theory Comput 5(4):1016–1026

    Article  CAS  Google Scholar 

  33. Zhao Y, Truhlar DG (2008). Theor Chem Accounts Theory Comput Model (Theoretica Chim Acta) 120(1):215–241

    Article  CAS  Google Scholar 

  34. Walker M, Harvey AJA, Sen A, Dessent CEH (2013). J Phys Chem A 117(47):12590–12600

    Article  CAS  Google Scholar 

  35. Domingo LR, Chamorro E, Pérez P (2008). J Org Chem 73(12):4615–4624

    Article  CAS  Google Scholar 

  36. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82(20):6723–6726

    Article  CAS  Google Scholar 

  37. Sheela NR, Muthu S, Sampathkrishnan S (2014) Spectrochim. Acta Part A Mol Biomol Spectrosc 120:237–251

    Article  CAS  Google Scholar 

  38. Chandra A, Uchimaru T (2002) The O-H Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study. Int J Mol Sci 3(4):407–422

    Article  CAS  Google Scholar 

  39. Biegler-König F, Schönbohm J (2002). J Comput Chem 23(15):1489–1494

    Article  Google Scholar 

  40. Kumar PSV, Raghavendra V, Subramanian V (2016). J Chem Sci 128(10):1527–1536

    Article  CAS  Google Scholar 

  41. Gordon MS (1985) Potential-energy surfaces in singlet and triplet silylene. Chem Phys Lett 114(4):348–352

    Article  CAS  Google Scholar 

  42. Bader RFW (2005) The Quantum Mechanical Basis of Conceptual Chemistry. Monatshefte für Chemie/Chemical Mon 136(6):819–854

    Article  CAS  Google Scholar 

  43. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  44. Yang Q, Yang H, Ding X, Xue W, Sun S (2020) The effect of adsorption and grafting on the acidity of [(HSO3)C3C1im]+[Cl]− on the surface of (SiO2)4O2H4 clusters. J Mol Graph Model 96:107528

    Article  CAS  Google Scholar 

  45. Weinhold F, Landis CR, Glendening ED (2016) What is NBO analysis and how is it useful? Int Rev Phys Chem 35(3):399–440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate Tarbiat Modares University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 11173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubi-Chianeh, M., Kassaee, M.Z. New Hydroxylated Cyclic and Acyclic Silylenes Via DFT. Silicon 13, 3385–3397 (2021). https://doi.org/10.1007/s12633-020-00750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00750-5

Keywords

Navigation