Skip to main content
Log in

Borasilylenes in Focus: Topological Effects of Nitrogen Atoms by DFT

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

DFT calculations in combination with appropriate isodesmic reactions are employed to assess topological effects of nitrogens on thermodynamic parameters of novel mono-, di-, tri-, tetra-, and pentaaza-7-boratricyclo[1,1,1,01,7,07,3,07,5]hexa-2-silylenes (120). Despite the enormous steric strain involved in their cubic structures, all our scrutinized singlet and triplet silylenes (1s-20s vs. 1t-20t, respectively) appear as minima on their energy surfaces, for showing singlet ground states. The highest stability (ΔEs−t) is achieved by 1,3,5-triaza-7-boratricyclo[1,1,1,01,7,07,3,07,5]hexa-2-silylene (11), where all the three nitrogens are bonded to the central boron atom. All of our silylenes show the same trend for their calculated ΔΕs−t and band gap (ΔΕHOMO−LUMO). Isodesmic reactions are employed to compare and contrast nucleophilicity (N), electrophilicity (ω), and heat of hydrogenation (ΔEH) for our 40 silylenes (1s-20s vs. 1t-20t). In fact, we introduce a novel generation of tridimensional silylenes which have the intrinsic potential of expanding the existing boundaries of semiconductors, cumulated multi-dentate ligands, etc..

There are 40 novel borasilylenes with an unprecedented common framework that can accommodate up to five nitrogen heteroatoms. They include singlet (s) and triplet (t) mono-, di, tri-, tetra-, and pentaaza-7-boratricyclo[1,1,1,01,7,07,3,07,5]hexa-2-silylenes. They are compared and contrasted with respect to their geometrical parameters, thermodynamic stabilities, isodesmic reactions, at B3LYP/AUG-cc-pVTZ//B3LYP/6-311 + + G** level of theory. Despite the enormous steric strain involved in their cubic structures, all our scrutinized singlet and triplet silylenes appear as minima on their energy surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schoeller WW, Sundermann A, Reiher M (1999) Inorg Chem 38:29–37

    Article  CAS  Google Scholar 

  2. Holthausen MC, Koch W, Apeloig Y (1999) J Am Chem Soc 121:2623–2624

    Article  CAS  Google Scholar 

  3. Kassaee MZ, Shakib FA, Momeni MR, Ghambarian M, Musavi SM (2010) J Org Chem 75:2539–2545

    Article  CAS  PubMed  Google Scholar 

  4. Hadlington TJ, Driess M, Jones C (2018) Chem Soc Rev 47:4176–4197

    Article  CAS  PubMed  Google Scholar 

  5. Nefedov OM, Egorov MP, Ioffe AI, Menchikov LG, Zuev PS, Minkin VI, Simkin BY, Glukhovstev MN (1992) Pure Appl Chem 64:265–314

    Article  CAS  Google Scholar 

  6. Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999) J Phys Chem A 103:8213–8221

    Article  CAS  Google Scholar 

  7. Denk M, Lennon R, Hayashi R, West R, Belyakov AV, Verne HP, Haaland A, Wagner M, Metzler N (1994) J Am Chem Soc 116:2691

    Article  CAS  Google Scholar 

  8. Ayoubi-Chianeh M, Kassaee MZ (2019) J Phys Org Chem 32(10):1–15

    Article  CAS  Google Scholar 

  9. Heaven MW, Metha GF, Buntine MA (2001) J Phys Chem A 105:1185–1196

    Article  CAS  Google Scholar 

  10. Zachariah MR, Tsang W (1995) J Phys Chem 99:5308–5318

    Article  CAS  Google Scholar 

  11. Lucas DJ, Curtiss LA, Pople JA (1993) J Chem Phys 99:6697–6703

    Article  CAS  Google Scholar 

  12. Boudjouk P, Black E, Kumarathasan R (1991) Organometal 10:2095–2096

    Article  CAS  Google Scholar 

  13. Kassaee MZ, Buazar F, Soleimani-Amiri S (2008) J Mol Struct THEOCHEM 866:52–57

    Article  CAS  Google Scholar 

  14. Cote DR, Van Nguyen S, Stamper AK, Armbrust DS, Tobben D, Conti RA, Lee GY (1999) IBM J Res Dev 43:5–38

    Article  CAS  Google Scholar 

  15. Kassaee MZ, Najafi Z, Shakib FA, Momeni MR (2011) J Organometal Chem 696:2059–2064

    Article  CAS  Google Scholar 

  16. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Chem Rev 100:39–92

    Article  CAS  PubMed  Google Scholar 

  17. Mizuhata Y, Sasamori T, Tokitoh N (2009) Chem Rev 109:3479–3511

    Article  CAS  PubMed  Google Scholar 

  18. Nyulaszi L, Belghazi A, Kis-Szetsi S, Veszpremi T, Heinicke J (1994) Theochem 313:73–81

    Article  Google Scholar 

  19. Schoeller WW, Eisner D (2004) Inorg Chem 43:2585–2589

    Article  CAS  PubMed  Google Scholar 

  20. Kirilchuk AA, Rozhenko AB, Leszczynski J (2017) Comp Theor Chem 1103:83–91

    Article  CAS  Google Scholar 

  21. Zhou YP, Zh. Mo MPh, Luecke M, Driess (2018) Chem Eur J 24:4780–4784

    Article  CAS  PubMed  Google Scholar 

  22. Zhou YP, Wang Y, Driess M (2017) J Organometal Chem 829:2–10

    Article  CAS  Google Scholar 

  23. Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Angew Chem Int Ed 51:11478–11482

    Article  CAS  Google Scholar 

  24. Schmidt M, Blom B, Szilvasi T, Schomacker R, Driess M (2017) Eur J Inorg Chem 9:1284–1291

    Article  CAS  Google Scholar 

  25. Ren H, Zhou YP, Bai Y, Cui C, Driess M (2017) Chem Eur J 23:5663–5667

    Article  CAS  PubMed  Google Scholar 

  26. Tan G, Enthaler S, Inoue Sh, Blom B, Driess M (2015) Angew Chem Int Ed 54:2214–2218

    Article  CAS  Google Scholar 

  27. Ayoubi-Chianeh M, Kassaee MZ, Ashenagar S, Cummings PT (2019) J Phys Org Chem 32(8):1–13

    Article  CAS  Google Scholar 

  28. Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Angew Chem Int Ed 51:11478

    Article  CAS  Google Scholar 

  29. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J (2009) ACS Nano 3:907

    Article  CAS  PubMed  Google Scholar 

  30. Fürstner A, Krause H, Lehmann CW (2001) Chem Commun :2372–2373

  31. Yamada T, Mawatari A, Tanabe M, Osakada K, Tanase T (2009) Angew Chemie 121:576

    Article  Google Scholar 

  32. Soleimani Purlak N, Kassaee MZ (2020) J Phys Org Chem 33(6):1–22

    Article  CAS  Google Scholar 

  33. Kassaee MZ, Musavi SM, Hamadi H, Ghambarian M, Hosseini SE, J Molecul Struct: THEOCHEM, 2005, 730 33–44

    Article  CAS  Google Scholar 

  34. Akbari A, Golzadeh B, Arshadi S, Kassaee MZ (2015) RSC Adv 5:43319–43327

    Article  CAS  Google Scholar 

  35. Kassaee MZ, Musavi SM, Ghambarian M (2005) J Mol Struct (Theochem) 731:225–231

    Article  CAS  Google Scholar 

  36. Yan Z, Truhlar DG (2008) Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  37. Becke AD (1988) Phys Rev 38:3098

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  40. Adamo C, di Matteo A (1999) Adv Quantum Chem 36:45–75

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) Acc Chem Res 41(2):157–167

    Article  CAS  PubMed  Google Scholar 

  42. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Ahangari MG, Mashhadzadeh AH, Fathalian M, Dadrasi A, Rostamiyan Y, Mallahi A (2019) Vacuum 165:26–34

    Article  CAS  Google Scholar 

  45. Mashhadzadeh AH, Fereidoon A, Ahangari MG (2017) Superlattices Microstruct 111:23–31

    Article  CAS  Google Scholar 

  46. Mashhadzadeh AH, Fereidoon A, Ahangari MG (2017) Mater Chem Phys 201:214–223

    Article  CAS  Google Scholar 

  47. Mashhadzadeh AH, Ahangari MG, Salmankhani A, Fataliyan M (2018) Phys E 104:275–285

    Article  CAS  Google Scholar 

  48. Ghafari A, Boochani A, Janowitz C, Manzke R (2011) Phys Rev B :84

  49. Afsari M, Boochani A, Hantezadeh M, Elahi SM (2017) Solid State Commun 259:10–15

    Article  CAS  Google Scholar 

  50. Lashgari H, Abolhassani MR, Boochani A, Sartipi E, Taghavi-Mendi R, Ghaderi A (2016) Indian J Phys 90:909–916

    Article  CAS  Google Scholar 

  51. Kassaee MZ, Ashenagar S (2018) J Mol Model 24:2–11

    Article  CAS  Google Scholar 

  52. Domingo LR, Chamorro E, Perez P (2008) J Org Chem 73:4615–4624

    Article  CAS  PubMed  Google Scholar 

  53. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  54. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  55. Kassaee MZ, Najafi Z, Shakib FA, Momeni MR (2011) J Organomet Chem 696:2059–2064

    Article  CAS  Google Scholar 

  56. Wang RH, Su MD (2008) J Phys Chem A 112:7689–7698

    Article  CAS  PubMed  Google Scholar 

  57. Martin D, Baceiredo A, Gornitzka H, Schoeller WW, Bertrand G (2005) Angew Chem Int Ed 44:1700–1703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from Tarbiat Modares University (TMU) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zaman Kassaee.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mohammad Zaman Kassaee is a visiting scholar (sabbatical).

Electronic Supplementary Material

ESM 1

(DOCX 10.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, N., Kassaee, M.Z. & Cummings, P.T. Borasilylenes in Focus: Topological Effects of Nitrogen Atoms by DFT. Silicon 13, 3377–3383 (2021). https://doi.org/10.1007/s12633-020-00745-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00745-2

Keywords

Navigation