Skip to main content

Advertisement

Log in

Structure, Optical, Electronic and Chemical Characteristics of Novel (PVA-CoO) Structure Doped with Silicon Carbide

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the current work, the effect of increasing the number of atoms on the geometric, electronics and spectral properties of the PVA-CoO-SiC) structure was studied by Gaussian 0.9 program with help of Gaussian View 0.5 using density function theory, (DFT) with (LanL2DZ). The geometrical, electronic and spectroscopic properties of (PVA-CoO-SiC) (46Atom) and (PVA-CoO-SiC) (91Atom). The geometric properties included improving geometric optimization (bonds and angles).As for the electronics properties such as (Ionization potential,Electron affinity, Chemical hardness,Chemical softness, Electronegativity, Total energy, cohesive energy, energy gap, Electrophilicity and density of states),in addition to spectral properties, that involved (IR, Raman,UV-Visible). There was a direct effect on all the properties of the studied structure when number of atoms of the structure increase. The obtained results indicated to the PVA-CoO-SiC can be used for various modern applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma SK, Prakash J, Sudarshan K, Sen D, Mazumder S, Pujari PK (2015) Structure at interphase of poly (vinyl alcohol)–SiCNanofiber composite and its impact on mechanical properties: positron annihilation and small-angle X-ray scattering studies. Macromolecules 48(16):5706–5713

    Article  CAS  Google Scholar 

  2. Toniolo JC, Takimi AS, Bergmann CP (2010) Nanostructured cobalt oxides (Co3O4 and CoO) and metallic co powders synthesized by the solution combustion method. Mater Res Bull 45(6):672–676

    Article  CAS  Google Scholar 

  3. Kumar D, Jat SK, Khanna PK, Vijayan N, Banerjee S (2012) Synthesis, characterization, and studies of PVA/co-doped ZnO nanocomposite films. International Journal of Green Nanotechnology 4(3):408–416

    Article  CAS  Google Scholar 

  4. Hoffmann J, Řeznı́čková I, Kozáková J, Růžička J, Alexy P, Bakoš D, Precnerová L (2003) Assessing biodegradability of plastics based on poly (vinyl alcohol) and protein wastes. Polym Degrad Stab, 79(3), 511–519

  5. Lee J, Bhattacharyya D, Easteal AJ, Metson JB (2008) Properties of nano-ZnO/poly (vinyl alcohol)/poly (ethylene oxide) composite thin films. Curr Appl Phys 8(1):42–47

    Article  Google Scholar 

  6. Ram S, Mandal TK (2004) Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water. Chem Phys 303(1–2):121–128

    Article  CAS  Google Scholar 

  7. Hermann K, Witko M (2001) Theory of physical and chemical behavior of transition metal oxides: vanadium and molybdenum oxides. In Oxide surfaces, 9,136-198. Elsevier

  8. Oyama ST (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15(2):179–200

    Article  CAS  Google Scholar 

  9. Hashim A, Abduljalil HM, Ahmed H (2020) Fabrication and characterization of (PVA-TiO2)1-x/ SiCx nanocomposites for biomedical applications. Egypt J Chem, 63(1), https://doi.org/10.21608/EJCHEM.2019.10712.1695

  10. Ahmed H, Hashim A (2020) Fabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applications. Egypt J Chem. 63(3). https://doi.org/10.21608/EJCHEM.2019.11109.1712

  11. Al-Garah NH, Rashid FL, Hadi A, Hashim A (2018) Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. Journal of Bionanoscience. 12, https://doi.org/10.1166/jbns.2018.1538

  12. Hind Ahmed, Ahmed Hashim and Hayder M. Abduljalil, Analysis of Structural, electrical and electronic properties of (polymer nanocomposites/ silicon carbide) for antibacterial application, Egypt J Chem. Vol. 62, No. 4. pp.1167–1176, DOI: https://doi.org/10.21608/EJCHEM.2019.6241.1522 , (2019)

  13. Hashim A, Agool IR, Kadhim KJ (2018) Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a review. Journal of Bionanoscience, 12(5), https://doi.org/10.1166/jbns.2018.1580

  14. Kadhim KJ, Agool IR, Hashim A (2016) Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Materials Focus. 5(5), https://doi.org/10.1166/mat.2016.1371

  15. Hazim A, Hashim A, Abduljalil HM (2019) Novel (PMMA-ZrO2-Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industries. International Journal of Emerging Trends in Engineering Research, 7(8), https://doi.org/10.30534/ijeter/2019/01782019

  16. Kadhim KJ, Agool IR, Hashim A (2017) Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. Journal of Advanced Physics, 6(2), https://doi.org/10.1166/jap.2017.1313

  17. Hazim A, Abduljalil HM, Hashim A (2019) Structural, electronic, optical properties and antibacterial application of novel (PMMA-Al2O3-Ag) nanocomposites for dental industries applications. International Journal of Emerging Trends in Engineering Research, 7(8), https://doi.org/10.30534/ijeter/2019/04782019

  18. Hashim A, Habeeb MA (2019) Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans Electr Electron Mater, https://doi.org/10.1007/s42341-018-0081-1

  19. Hashim A, Jassim A (2018) Novel of biodegradable polymers-inorganic nanoparticles: Structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications, journal of Bionanoscience. Vol. 12:170–176. https://doi.org/10.1166/jbns.2018.1518

    Article  CAS  Google Scholar 

  20. Hashim A, Habeeb MA, Hadi A (2017) Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens Lett 15(9):758–761. https://doi.org/10.1166/sl.2017.3876

    Article  Google Scholar 

  21. Hashim A, Hadi A (2017) Synthesis and characterization of (MgO-Y2O3-CuO) nanocomposites for novel humidity sensor application. Sensor Letters. 15, https://doi.org/10.1166/sl.2017.3900

  22. Ahmed H, Abduljalil HM, Hashim A (2019) Structural, optical and electronic properties of novel (PVA–MgO)/SiC Nanocomposites films for humidity sensors, transactions on electrical and electronic materials. https://doi.org/10.1007/s42341-019-00111-z

  23. Hashim A, Jassim A (2017) Novel of (PVA-ST-PbO2) bio Nanocomposites: preparation and properties for humidity sensors and radiation shielding applications, Sens Lett. 15(12), https://doi.org/10.1166/sl.2018.3915

  24. Hadi A, Hashim A (2017) Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukrainian Journal of Physics, 62(12), https://doi.org/10.15407/ujpe62.12.1044

  25. Hind Ahmed, Hayder M. Abduljalil, Ahmed Hashim (2019) Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans Electr Electron Mater, https://doi.org/10.1007/s42341-019-00100-2

  26. Agool IR, Kadhim KJ, Hashim A (2017) Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int J Plast Technol. 21(2) https://doi.org/10.1007/s12588-017-9192-5

  27. Rashid FL, Talib SM, Hadi A, Hashim A (2018) Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf Series: Materials Science and Engineering 454:012113. https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  28. Shareef AS, Rashid FL, Hadi A, Hashim A ( 2019) Water-polyethylene glycol/ (SiC-WC) and (CeO2-WC) nanofluids for saving solar energy. Int J Sci Technol Res, 8(11)

  29. Hadi A, Rashid FL, Hussein HQ, Hashim A (2019) Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conference Series: Materials Science and Engineering 518(3):5. https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  30. Agool IR, Kadhim KJ, Hashim A, Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int J Plast Technol, 20(1), https://doi.org/10.1007/s12588-016-9144-5

  31. Rashid FL, Hadi A, Al-Garah NH, Hashim A (2018) Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. International Journal of Pharmaceutical and Phytopharmacological Research, 8(1)

  32. Agool IR, Kadhim KJ, Hashim A (2017) Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. International Journal of Plastics Technology, 21(2), https://doi.org/10.1007/s12588-017-9196-1

  33. Hadi A, Hashim A, Hassan D (2020) Fabrication of new ceramics nanocomposites for solar energy storage and release. Bulletin of Electrical Engineering and Informatics 9(1), https://doi.org/10.11591/eei.v9i1.1323

  34. Hashim A, Hamid N (2018) Fabrication and properties of biopolymer-ceramics nanocomposites as UV-shielding for bionanoscience application, Journal of Bionanoscience 12(6), https://doi.org/10.1166/jbns.2018.1591

  35. Hashim A, Hamad ZS (2018) Novel of (Niobium Carbide-Biopolymer Blend) Nanocomposites: Characterization for Bioenvironmental Applications, Journal of Bionanoscience, 12(4), https://doi.org/10.1166/jbns.2018.1551

  36. Hassan D, Hashim A (2018) Preparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applications. Journal of Bionanoscience 12(3):346–349. https://doi.org/10.1166/jbns.2018.1537

    Article  CAS  Google Scholar 

  37. Hashim A, Hamad ZS (2018) Synthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocomposites. Journal of Bionanoscience 12(4). https://doi.org/10.1166/jbns.2018.1561

  38. Abbas B, Hashim A (2019) Novel X-rays attenuation by ( PMMA-PS-WC) new nanocompsites: fabrication, structural, optical characterizations and X-ray shielding application, International Journal of Emerging Trends in Engineering Research 7(8). https://doi.org/10.30534/ijeter/2019/06782019

  39. Al-Attiyah KHH, Hashim A, Obaid SF (2018) Synthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applications. Journal of Bionanoscience 12:200–205. https://doi.org/10.1166/jbns.2018.1526

    Article  CAS  Google Scholar 

  40. Hassan D, Hashim A (2018) Structural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applications. Journal of Bionanoscience. 12(3) https://doi.org/10.1166/jbns.2018.1533

  41. Angham H, Ahmed H, Hayder MA (2019) Analysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA -Ag) nanocomposites for low cost electronics and optics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

  42. Ahmed H, Hashim A (2020) Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches, transactions on electrical and electronic materials, https://doi.org/10.1007/s42341-020-00244-6

  43. Ahmed H, Hashim A (2020) Structural, optical and electronic properties of silicon carbide doped pva/nio for low cost electronics applications. Silicon, https://doi.org/10.1007/s12633-020-00543-w

  44. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model, https://doi.org/10.1007/s00894-020-04479-1

  45. Ahmed H, Hashim A (2019) Fabrication of novel (PVA/NiO/SiC) nanocomposites, structural, electronic and optical properties for humidity sensors. Int J Sci Technol Res, 8(11)

  46. Ahmed H, Hashim A (2020) Geometry optimization, optical and electronic characteristics of novel PVA/PEO/SiC structure for electronics applications, silicon, https://doi.org/10.1007/s12633-020-00620-0

  47. Hazim A, Abduljalil HM, Hashim A (2020) First principles calculations of electronic, structural and optical properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) nanocomposites for optoelectronics applications, transactions on electrical and electronic materials, https://doi.org/10.1007/s42341-020-00224-w

  48. Hazim A, Abduljalil HM, Hashim A (2020) Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices, transactions on electrical and electronic materials, https://doi.org/10.1007/s42341-020-00210-2

  49. Jasim FA, Hashim A, Hadi AG, Lafta F, Salman SR, Ahmed H (2013) Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Research Journal of Applied Sciences 8(9):439–441

    Google Scholar 

  50. Ahmed H, Hashim A, Abduljalil HM (2020) Determination of optical parameters of films Of PVA/TiO2/SiC and PVA/MgO/SiC nanocomposites for optoelectronics and UV-detectors, Ukr J Phys 65(6). https://doi.org/10.15407/ujpe65.6.533

  51. Jasim FA, Lafta F, Hashim A, Ali M, Hadi AG (2013) Characterization of palm fronds-polystyrene composites. J Eng Appl Sci 8(5):140–142

    Google Scholar 

  52. Hashim A, Agool IR, Kadhim KJ (2018) Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release. Gamma ray shielding, antibacterial activity and humidity sensors applications. J Mater Sci Mater Electron 29(12):10369–10394. https://doi.org/10.1007/s10854-018-9095-z

    Article  CAS  Google Scholar 

  53. Khalid HH, Al-Attiyah AH, Obaid SF (2019) Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int J Plast Technol. 23(1), https://doi.org/10.1007/s12588-019-09228-5

  54. Hashim A, Al-Attiyah KHH, Obaid SF (2019) Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr. J. Phys. 64(2) https://doi.org/10.15407/ujpe64.2.157

  55. Hashim A, Hadi A (2017) Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukrainian Journal of Physics, 62(11), https://doi.org/10.15407/ujpe62.11.0978

  56. Hashim A, Al-Khafaji Y, Hadi A (2019) Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites, transactions on electrical and electronic materials. https://doi.org/10.1007/s42341-019-00145-3

  57. Agool IR, Mohammed FS, Hashim A (2015) The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv Environ Biol 9(11)

  58. Rashid FL, Hashim A, Habeeb MA, Salman SR, Ahmed H (2013) Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J Eng Appl Sci 8(5):137–139

    Google Scholar 

  59. Hashim A, Abduljalil H, Ahmed H (2019) Analysis of optical, electronic and spectroscopic properties of (Biopolymer-SiC) nanocomposites for electronics applications. Egypt J Chem. 10.21608/EJCHEM.2019.7154.1590

  60. Hashim A, Habeeb MA, Khalaf A, Hadi A (2017) Fabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their Structural, electrical and optical properties for humidity sensors applications. Sens Lett 15:589–596. https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  61. Hadi S, Hashim A, Jewad A (2011) Optical properties of (PVA-LiF) composites. Aust J Basic Appl Sci 5(9):2192–2195

    CAS  Google Scholar 

  62. Jebur QM, Hashim A, Habeeb MA (2019) Structural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) Nanocomposites for optoelectronics applications, transactions on electrical and electronic materials. https://doi.org/10.1007/s42341-019-00121-x

  63. Kadham AJ, Hassan D, Mohammad N, Hashim A (2018) Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bulletin of Electrical Engineering and Informatics, 7(1), https://doi.org/10.11591/eei.v7i1.839

  64. Hashim A, Hamad ZS (2020) Lower cost and higher UV-absorption of polyvinyl alcohol/ silica nanocomposites for potential applications, Egypt J Chem. 63(2), https://doi.org/10.21608/EJCHEM.2019.7264.1593

  65. Bahaa H (2011) Rabee, Ahmed Hashim, synthesis and characterization of carbon nanotubes -polystyrene composites. Eur J Sci Res 60(2):247–254

    Google Scholar 

  66. Abduljalil H, Hashim A, Jewad A (2011) The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur J Sci Res 63(2):231–235

    Google Scholar 

  67. Al-Ramadhan Z, Hashim A, Kadham Algidsawi AJ (2011) The D.C electrical properties of (PVC-Al2O3) composites. AIP Conference Proceedings 1400(1). https://doi.org/10.1063/1.3663109

  68. Hashim A, Hadi A (2017) Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukrainian Journal of Physics, 62(12), https://doi.org/10.15407/ujpe62.12.1050

  69. Hashim A, Hadi A (2017) A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites, Sens Lett 15. https://doi.org/10.1166/sl.2017.3910

  70. Hashim A, Hadi A (2018) Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukrainian Journal of Physics, 63(8), https://doi.org/10.15407/ujpe63.8.754

  71. Hashim A, Hadi Q (2017) Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor, Sens Lett 15. https://doi.org/10.1166/sl.2017.3892

  72. Hashim A, Habeeb MA, Hadi A, Jebur QM, Hadi W (2017) Fabrication of novel (PVA-PEG-CMC-Fe3O4) magnetic nanocomposites for piezoelectric applications, Sens Lett. 15 :https://doi.org/10.1166/sl.2018.3935

  73. Hashim A, Hamad ZS (2019) Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J Nanostruct 9(2):340–348. https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  74. Hassan D, Ah-Yasari AH (2019) Fabrication and studying the dielectric properties of (Polystyrene-copper oxide) nanocomposites for piezoelectric application. Bulletin of Electrical Engineering and Informatics. 8(1), https://doi.org/10.11591/eei.v8i1.1019

  75. Habbeb MA, Hashim A, AbidAli A-RK (2011) The dielectric properties for (PMMA-LiF) composites. Eur J Sci Res 61(3):367–371

    Google Scholar 

  76. Hassan D, Hashim A (2018) Synthesis of (Poly-methyl methacrylate-lead oxide) nanocomposites and studying their A.C electrical properties for piezoelectric applications. Bulletin of Electrical Engineering and Informatics. 7(4), https://doi.org/10.11591/eei.v7i4.969

  77. Kohanoff J, Gidopoulos NI (2003) Density functional theory: basics, new trends and applications. Handbook of molecular physics and quantum chemistry 2(part 5):532–568

    CAS  Google Scholar 

  78. Jensen F (2002) Polarization consistent basis sets. II Estimating the Kohn–Sham basis set limit. The Journal of chemical physics 116(17):7372–7379

    Article  CAS  Google Scholar 

  79. Young DC (2001) A practical guide for applying techniques to real-world problems

    Google Scholar 

  80. Hugosson HW (2001) A theoretical treatise on the electronic structure of designer hard materials (Doctoral dissertation, ActaUniversitatisUpsaliensis)

  81. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley & Sons Inc, New York

    Google Scholar 

  82. Oftadeh M, Naseh S, Hamadanian M (2011) Electronic properties and dipole polarizability of thiophene and thiophenol derivatives via density functional theory. Computational and Theoretical Chemistry 966(1–3):20–25

    Article  CAS  Google Scholar 

  83. Sadasivam K, Kumaresan R (2011) Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–a DFT study. Computational and Theoretical Chemistry 963(1):227–235

    Article  CAS  Google Scholar 

  84. Chen J, Wu X, Selloni A (2011) Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys Rev B 83(24):245204

    Article  Google Scholar 

  85. Creazzo F, Galimberti DR, Pezzotti S, Gaigeot MP (2019) DFT-MD of the (110)-Co3O4 cobalt oxide semiconductor in contact with liquid water, preliminary chemical and physical insights into the electrochemical environment. J Chem Phys 150(4):041721

    Article  Google Scholar 

  86. Yu M, Jayanthi CS, Wu SY (2009) Bonding nature, Structural optimization, and energetics studies of SiC graphitic-like layer structures and single/double walled nanotubes. arXiv preprint arXiv:0901.3567

  87. Tang CW, Wang CB, Chien SH (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. ThermochimicaActa 473(1–2):68–73

    Article  CAS  Google Scholar 

  88. Lin HK, Wang CB, Chiu HC, Chien SH (2003) In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide. Catal Lett 86(1–3):63–68

    Article  CAS  Google Scholar 

  89. Atkins P, De Paula J (2011) Physical chemistry for the life sciences. Oxford University Press, USA

    Google Scholar 

  90. Kavitha E, Sundaraganesan N, Sebastian S (2010) Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method

    Google Scholar 

  91. Hashim A, Hadi Q (2018) Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J Inorg Organomet Polym Mater 28(4):1394–1401. https://doi.org/10.1007/s10904-018-0837-4

    Article  CAS  Google Scholar 

  92. Hashim A, Hadi Q (2018) Structural, electrical and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low cost humidity sensors. J Mater Sci Mater Electron 29:11598–11604. https://doi.org/10.1007/s10854-018-9257-z

    Article  CAS  Google Scholar 

  93. Hadi A, Hashim A, Al-Khafaji Y (2020) Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices, transactions on electrical and electronic materials. https://doi.org/10.1007/s42341-020-00189-w

  94. Hashim A (2020) Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications, journal of inorganic and organometallic polymers and materials. https://doi.org/10.1007/s10904-020-01528-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Hashim, A. Structure, Optical, Electronic and Chemical Characteristics of Novel (PVA-CoO) Structure Doped with Silicon Carbide. Silicon 13, 4331–4344 (2021). https://doi.org/10.1007/s12633-020-00723-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00723-8

Keywords

Navigation