Skip to main content

Advertisement

Log in

Plectranthus amboinicus Leaf Extract Synthesized Spherical like-TiO2 Photoanode for Dye-Sensitized Solar Cell Application

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Spherical like-Titanium dioxide (TiO2) nanoparticles were synthesized by the green sol-gel method using Plectranthus amboinicus leaf extract for different pH values. The prepared TiO2 nanoparticles have been coated over the Indium tin oxide (ITO) substrate by using the doctor blade approach and the Rose Bengal (RB) organic dye utilized as a sensitizer for all constructed dye-sensitized solar cells (DSSCs). The X-ray diffraction (XRD) endorses the creation of tetragonal crystal structured TiO2 nanoparticles with the anatase phase and the average crystalline size is estimated as 27 nm. Scanning electron microscopy (SEM) micrograph reveals that the nanoparticles are uniformly distributed with spherical like-morphology without agglomeration. UV absorption spectra (UV-Vis) was absorbed to protect the bandgap energy in the range of 3.02–2.95 eV. Fourier transform infrared spectrum (FTIR) was recorded to investigate the presence of chemical composition in synthesized pure TiO2 nanoparticles. The DSSCs assembled for prepared TiO2 nanoparticles have exhibited solar to electrical energy conversion efficiency reached 1.3% by using Plectranthus amboinicus leaf extract under the illumination of 100 mW cm−2.

Graphical abstract

Graphical abstract represents the fabrication of DSSC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X, Selloni A (2014) American Chemical Society

  2. N Senthilkumar, A Arulraj, E Nandhakumar, M Ganapathy M Vimalan, I V Potheher (2018) J Mater Sci Mater Electron, 29(15)

  3. Shen P , Tseng C , Kuo T, C Kuei Shih (2015) Solar energy 345

  4. Raghavan N, Thangavel S, Venugopal G (2007) Material Science Semiconductor Processing 321

  5. Leung M (2007) DYC Leung renewable sustain energy review 401

  6. Sahoo DD, Roy GS (2013) Researcher 104

  7. Nivea R, Gunasekaran V, Kannan R (2014) J Nanosci Nanotechnol 4383

  8. Cheung SH, Nachimuthu P (2001). Joly AG Surf Sci 601:1754

    Article  Google Scholar 

  9. Giribabu L, Kanaparthi RK, V Vel (2012) kannan 328

  10. Zhang S, Yang X, Numata Y (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6:1443

    Article  Google Scholar 

  11. Kumar KP, Keizer N, Burggraaf (1992) Densification of nanostructured titania assisted by a phase transformation. Nature 358:48–51

    Article  CAS  Google Scholar 

  12. Kumar SR, Suresh C, Vasudevan K, Suja NR, Mukundan P (1999). Mater Lett 38:161

    Article  Google Scholar 

  13. Campostrinin R, Ischia M, Palmisano L (2003). Journal of Thermal Analysis Calorimetry 71:1011–1022

    Article  Google Scholar 

  14. Gouma PI, Mills MJ (2001). J Am Ceram Soc 84:619

    Article  CAS  Google Scholar 

  15. Shiming N, Guo F, Wang D, Jiao S, Wang J, Zhang Y (2019). Crystals 9(2):113

    Article  Google Scholar 

  16. Sofyan N, Ridhova A, Yuwono A, Udhiarto A (2019). Int J Energy Res 43(11):5959

    Article  CAS  Google Scholar 

  17. Anajafi Z, Marandi M, Taghavinia N (2015) Physica E low dimensional systems and Nanostructures 113

  18. Patel R, Singh S (2010). Pharmacognosy Journal 2:536

    Article  Google Scholar 

  19. Ragasa CY, Sangalang V, Pendon Z (1999) Philipp J Sci 347

  20. Sugimoto T, Zhou X, Muramatsu A (2003). J Colloid Interface Sci 259(1):43

    Article  CAS  Google Scholar 

  21. Muhammad N, Duangjai T; Journal of green chemistry letters and reviewers 492

  22. Arumugam G, Sinniah MK (2016). Molecules 21(4):369

    Article  Google Scholar 

  23. Hariharan D, Thangamuniyandi P, Christy AJ, Vasantharaja R, Selvakumar P, Sagadevan S, Pugazhendhi A, Nehru LC (2020) J Photochem Photobiol B Biol, 202

  24. Sundaram M, Kalpana S, Sivaganesan V, Nandhakumar E (2019). Materials Research Express 6:12

    Google Scholar 

  25. Hariharan DA, Jegatha Christy, Selvakumar Pitchaiya, Suresh P, Sagadevan U, Thangamuniyandi Devan, Nehru LC (2019) J Mater Sci Mater Electron 30

  26. Amal N, Nadhirah M, Arham NA (2014). Adv Mater Res 832:350

    Google Scholar 

  27. Pal M, Serrano JG, Santiago P, Pal U (2007). J Phys Chem C 111(1):96

    Article  CAS  Google Scholar 

  28. Vetrivel V, Rajendran K, Kalaiselvi V (2015) International Journal ChemTech Research 1090

  29. L Hanbin, C Minsik, K Younhee, Myoungyoung A, and Lee M (2012) Journal of Bulletin- Korean Chemical Society 33(5)

  30. Rajabi M, Shogh S, Irajizad A (2015) Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy. Journal of Luminescence 157:235–242

    Article  CAS  Google Scholar 

  31. Selman AM, Hassan Z, Husham M (2014). Science Direct 56:155

    Google Scholar 

  32. Pazokifard S, Mirabedini SM, Esfandeh M, Farrokhpay S (2012) Advanced Powder Technology 428

  33. Su W, Zhang J, Feng Z, Chen T, Ying P and Li C (2008) J Phys Chem 7710

  34. Lourduraj S, Williams RV (2016). Int J Nanosci 15:165

    Article  Google Scholar 

  35. Vijayalakshmi R, Rajendran V (2012). Archives of Applied Science Research 1724:02

    Google Scholar 

  36. Park S, Quan S, Kim YJ (2007). Journal of Precision Engineering and Manufacturing-Green Technology 3(4):397

  37. Mohanraj V, Jayaprakash R, Chandrasekaran J, Robert R, Sangaiya P (2017). Mater Sci Semicond Process 66:131–139

    Article  CAS  Google Scholar 

  38. Shalini S, Kumar TS, Prasanna, Balasundaraprabhu R (2020) TapasK Mallick, 164672

  39. Udomrungkhajornchai S, Junger IJ, Ehrmann A (2020). Optik 203:163945

    Article  CAS  Google Scholar 

  40. Holt A, Jacobs E Plant physiology 30(6) 553

  41. Weigl JW (2013). R Journal of American Chemical Society 75(9):2173

    Article  Google Scholar 

  42. Rosana NT Mary, Amarnath D Joshua (2020) Journal of Material Environmental Science 39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Rajendhiran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendhiran, R., Deivasigamani, V., Palanisamy, J. et al. Plectranthus amboinicus Leaf Extract Synthesized Spherical like-TiO2 Photoanode for Dye-Sensitized Solar Cell Application. Silicon 13, 3329–3336 (2021). https://doi.org/10.1007/s12633-020-00709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00709-6

Keywords

Navigation