Skip to main content
Log in

Influence of Multiphase High Silicon Steel (Retained Austenite-RA, Ferrite-F, Bainite-B and Pearlite-P) and Carbon Content of RA-Cγ on Rolling/Sliding Wear

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research work, heat-treatment processes have been utilized to obtain multiphase microstructure in the silicon rich steel samples, silicon in the steel helps in the development of multiphase microstructure and to keep away from carbide precipitation development through the austempering. The desired multiphase microstructure (Retained austenite-RA, Ferrite-F, Bainite-B and Pearlite-P) consisting of continuous cooling (CC) for 0, 20 and 40 s respectively after austenization followed by austempering at (300, 350 and 400 °C) to form a high wear resistance multiphase steels with microstructure varies amount of F,B, P and RA during continuous cooling. Steels with varies retained austenite up to (5±1.1 to 18±1.9%) along with excellent specific wear rate (2.038 × 10−9-1.061 × 10−8 m3/N-m) were obtained. Further, the rolling/sliding wear rate has been obtained through the disc-on-disc experimental setup. The effect of continuous cooling on retained austenite, carbon content of retained austenite on specific rolling/sliding SWR (specific wear rate) has been studied; phase fraction (P, B and F) and the materials characterization with the help of XRD, AFM and FE-SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goel NC, Sangal S, Tangri K (1985) A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite part I derivation of flow curve equations. Metall Trans A 16(11):2013–2021

    Article  Google Scholar 

  2. Xu Y, Tan X, Yang X, Hu Z, Peng F, Wu D, Wang G (2014) Microstructure evolution and mechanical properties of a hot-rolled directly quenched and partitioned steel containing proeutectoid ferrite. Mater Sci Eng A 607:460–475

    Article  CAS  Google Scholar 

  3. Zhu R, Li S, Song M, Karaman I, Arroyave R (2013) Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels. Mater Sci Eng A 569:137–143

    Article  CAS  Google Scholar 

  4. Nie W, Wang X, Wu S, Guan H, Shang C (2012) Stress-strain behavior of multi-phase high performance structural steel. Science China Technol Sci 55(7):1791–1796

    Article  CAS  Google Scholar 

  5. Tomota Y, Tokuda H, Adachi Y, Wakita M, Minakawa N, Moriai A, Morii Y (2004) Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater 52(20):5737–5745

    Article  CAS  Google Scholar 

  6. Shen YF, Liu YD, Sun X, Wang YD, Zuo L, Misra RD (2013) Improved ductility of transformation-induced-plasticity steel by nanoscale austenite lamellae. Mater Sci Eng A 583:1–10

    Article  CAS  Google Scholar 

  7. Xie ZJ, Ren YQ, Zhou WH, Yang JR, Shang CJ, Misra RD (2014) Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel. Mater Sci Eng A 603:69–75

    Article  CAS  Google Scholar 

  8. Blondé R, Jimenez-Melero E, Zhao L, Wright JP, Brück E, Van der Zwaag S, Van Dijk NH (2012) High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater 60(2):565–577

    Article  CAS  Google Scholar 

  9. Van Dijk NH, Butt AM, Zhao L, Sietsma J, Offerman SE, Wright JP, Van der Zwaag S (2005) Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater 53(20):5439–5447

    Article  CAS  Google Scholar 

  10. Jimenez-Melero E, Van Dijk NH, Zhao L, Sietsma J, Offerman SE, Wright JP, Van der Zwaag S (2009) The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels. Acta Mater 57(2):533–543

    Article  CAS  Google Scholar 

  11. Jimenez-Melero E, Van Dijk NH, Zhao L, Sietsma J, Offerman SE, Wright JP, Van der Zwaag S (2007) Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater 55(20):6713–6723

    Article  CAS  Google Scholar 

  12. Wang J, Van Der Zwaag S (2001) Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall Mater Trans A 32(6):1527–1539

    Article  Google Scholar 

  13. Timokhina IB, Hodgson PD, Pereloma EV (2004) Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A 35(8):2331–2341

    Article  Google Scholar 

  14. Jimenez-Melero E, Van Dijk NH, Zhao L, Sietsma J, Offerman SE, Wright JP, Van der Zwaag S (2007) Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr Mater 56(5):421–424

    Article  CAS  Google Scholar 

  15. Turteltaub S, Suiker AS (2006) Grain size effects in multiphase steels assisted by transformation-induced plasticity. Int J Solids Struct 43(24):7322–7336

    Article  CAS  Google Scholar 

  16. Hase K, Garcia-Mateo C, Bhadeshia HK (2006) Bimodal size-distribution of bainite plates. Mater Sci Eng A 438:145–148

    Article  CAS  Google Scholar 

  17. Sugimoto KI, Usui N, Kobayashi M, Hashimoto SI (1992) Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int 32(12):1311–1318

    Article  CAS  Google Scholar 

  18. Chiang J, Lawrence B, Boyd JD, Pilkey AK (2011) Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A 528(13–14):4516–4521

    Article  CAS  Google Scholar 

  19. Timokhina IB, Hodgson PD, Pereloma EV (2004) Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans 35(8):2331–2341

    Article  Google Scholar 

  20. De Knijf D, Petrov R, Föjer C, Kestens LA (2014) Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater Sci Eng A 615:107–115

    Article  CAS  Google Scholar 

  21. Jacques PJ, Delannay F, Ladrière J (2001) On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A 32(11):2759–2768

    Article  Google Scholar 

  22. Hilkhuijsen P, Geijselaers HJ, Bor TC, Perdahcıoğlu ES, vd Boogaard AH, Akkerman R (2013) Strain direction dependency of martensitic transformation in austenitic stainless steels: the effect of γ-texture. Mater Sci Eng A 573:100–105

    Article  CAS  Google Scholar 

  23. Kruijver SO, Zhao L, Sietsma J, Offerman SE, Van Dijk NH, Lauridsen EM, Margulies L, Grigull S, Poulsen HF, Van der Zwaag S (2003) In situ observations on the mechanical stability of austenite in TRIP-steel. In J de Phys IV (Proc) 104:499–502

    CAS  Google Scholar 

  24. Xu X, Xu W, Ederveen FH, van der Zwaag S (2013) Design of low hardness abrasion resistant steels. Wear 301(1–2):89–93

    Article  CAS  Google Scholar 

  25. Jha AK, Prasad BK, Modi OP, Das S, Yegneswaran AH (2003) Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel. Wear 254:120–128

    Article  CAS  Google Scholar 

  26. Sundström A, Rendón J, Olsson M (2001) Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions. Wear 250:744–754

    Article  Google Scholar 

  27. Singh K, Khatirkar RK, Sapate SG (2015) Microstructure evolution and abrasive wear behavior of D2 steel. Wear 328-329:206–216

    Article  CAS  Google Scholar 

  28. Modi OP, Mondal DP, Prasad BK, Singh M, Khaira HK (2003) Abrasive wear behaviour of a high carbon steel: effects of microstructure and experimental parameters and correlation with mechanical properties. Mater Sci Eng A 343:235–242

    Article  Google Scholar 

  29. Liu X, Meng X, Liu H, Shi G, Wu S, Sun C (2014) Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4 V alloy. Mater Des 55:404–409

    Article  CAS  Google Scholar 

  30. Lindroos M, Ratia V, Apostol M, Valtonen K, Laukkanen A, Molnar W (2015) The effect of impact conditions on the wear and deformation behavior of wear resistant steels. Wear 328-329:197–205

    Article  CAS  Google Scholar 

  31. Rementeria R, García I, Aranda MM, Caballero FG (2015) Reciprocating-sliding wear behavior of nanostructured and ultra-fine high-silicon bainitic steels. Wear 338-339:202–209

    Article  CAS  Google Scholar 

  32. Das Bakshi S, Shipway PH, Bhadeshia HKDH (2013) Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite. Wear 308:46–53

    Article  CAS  Google Scholar 

  33. Zhou WH, Challa VSA, Guo H, Shang CJ, Misra RDK (2015) Structure–mechanical property relationship in a low carbon Nb–cu microalloyed steel processed through a three-step heat treatment: the effect of tempering process. Mater Sci Eng A 620:454–462

    Article  CAS  Google Scholar 

  34. Bedolla-Jacuinde A, Guerra FV, Rainforth M, Mejía I, Maldonado C (2015) Sliding wear behavior of austempered ductile iron microalloyed with boron. Wear 330-331:23–31

    Article  CAS  Google Scholar 

  35. Gong W, Tomota Y, Adachi Y, Paradowska AM, Kelleher JF, Zhang SY (2013) Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta Mater 61(11):4142–4154

    Article  CAS  Google Scholar 

  36. Kaletin AY, Kaletina YV (2015) Evolution of the structure and properties of silicon steels in the austenite-bainite phase transition. Phys Solid State 57(1):59–64

    Article  CAS  Google Scholar 

  37. Singh VP, Patel SK, Kumar N, Kuriachen B (2019) Parametric effect on dissimilar friction stir welded steel-magnesium alloys joints: a review. Sci Technol Weld Join 24(8):653–684

    Article  CAS  Google Scholar 

  38. Leiro A, Kankanala A, Vuorinen E, Prakash B (2011) Tribological behaviour of carbide-free bainitic steel under dry rolling/sliding conditions. Wear 273(1):2–8

    Article  CAS  Google Scholar 

  39. Xu Y, Tan X, Yang X, Hu Z, Peng F, Wu D (2014) Microstructure evolution and mechanical properties of a hot-rolled directly quenched and partitioned steel containing pro eutectoid ferrite. Mater Sci Eng A 607:460–475

    Article  CAS  Google Scholar 

  40. Zhu R, Li S, Song M, Karaman I, Arroyave R (2013) Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels. Mater Sci Eng A 569:137–143

    Article  CAS  Google Scholar 

  41. Xie ZJ, Ren YQ, Zhou WH, Yang JR, Shang CJ, Misra RDK (2014) Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel. Mater Sci Eng A 603:69–75

    Article  CAS  Google Scholar 

  42. Tan X, Xu Y, Yang X, Liu Z, Wu D (2014) Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel. Mater Sci Eng A 594:149–160

    Article  CAS  Google Scholar 

  43. Tan X, Xu Y, Yang X, Wu D (2014) Microstructure–properties relationship in a one-step quenched and partitioned steel. Mater Sci Eng A 589:101–111

    Article  CAS  Google Scholar 

  44. Tan X-D, Xu Y-B, Yang X-L, Hu Z-P, Peng F, Ju X-W (2015) Austenitestabilization and high strength-elongation product of a low silicon aluminum-free hot-rolled directly quenched and dynamically partitioned steel. Mater Charact 104:23–30

    Article  CAS  Google Scholar 

  45. Leslie WC (1981) The physical metallurgy of steels. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  46. Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HK (2004) Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol 20(7):814–818

    Article  CAS  Google Scholar 

  47. Courbon C, Arrieta IM, Cabanettes F, Rech J, Arrazola PJ (2020) The contribution of microstructure and friction in broaching Ferrite–Pearlite steels: CIRP Annals

  48. Sharma S, Sangal S, Mondal K (2011) Development of new high-strength carbide-free bainitic steels. Metall Mater Trans A 42(13):3921–3933

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mechanical Engineering Department and Material Science Metallurgical Engineering Department of Maulana Azad National Institute of Technology Bhopal (MANIT) for providing the necessary facilities for this experimental study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Dwivedi, R.K. & Ahmed, S. Influence of Multiphase High Silicon Steel (Retained Austenite-RA, Ferrite-F, Bainite-B and Pearlite-P) and Carbon Content of RA-Cγ on Rolling/Sliding Wear. Silicon 13, 3307–3320 (2021). https://doi.org/10.1007/s12633-020-00682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00682-0

Keywords

Navigation