Skip to main content
Log in

The Role of High-K Dielectrics in Improving the Performance of Metal-Insulator-Semiconductor Solar Cells

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper assesses the electrical performance of a metal-insulator-semiconductor (MIS) solar cell designed by using different high-k dielectrics. The study is aimed to achieve the optimized device geometrical dimensions while improving the quantum mechanical tunnelling mechanisms. In addition, an overall comparison between the proposed solar cell structures made of crystalline (c-Si) or hydrogenated amorphous (a-Si:H) silicon is presented. In particular, 10-Å-thick HfO2 and Al2O3 layers are used as alternative high-k materials to surmount the conventional SiO2 drawbacks. Besides, in order to achieve the highest possible conversion efficiency (n), we have investigated the oxide physical and geometrical parameters effects on the fundamental cell figure of merits. The obtained results indicate that a MIS solar cell involving HfO2 and a c-Si bulk, with cell thickness of 250 μm and an acceptor doping density of NA = 7 × 1015 cm−3, perform the optimized results, namely JSC = 45.06 mA/cm2,VOC = 0.592 V,FF = 81.95%, and η = 21.85%.At the same time, for an a-Si:H-based thin structure with a cell thickness of 2 μm(NA = 7 × 1015 cm−3) we obtained JSC = 16.3 mA/cm2,VOC = 1.025 V, FF = 78.8%,and η = 13.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MGreen MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AW (2019) Solar cell efficiency tables (version 54). Prog Photovolt Res Appl 27:565–575. https://doi.org/10.1002/pip.3171

    Article  Google Scholar 

  2. Labrador NY, Li X, Liu Y, Tan H, Wang R, Koberstein JT, Esposito DV (2016) Enhanced performance of Si MIS photocathodes containing oxide-coated nanoparticle electrocatalysts. Nano Lett 16:6452–6459. https://doi.org/10.1021/acs.nanolett.6b02909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu T, Chong MN (2015) Prospects of metal–insulator–semiconductor (MIS) nanojunction structures for enhanced hydrogen evolution in photoelectrochemical cells: a review. Nano Energy 12:347–373. https://doi.org/10.1016/j.nanoen.2015.01.001

    Article  CAS  Google Scholar 

  4. Bencherif H, Dehimi L, Pezzimenti F, Della Corte FG (2019) Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik. https://doi.org/10.1016/j.ijleo.2019.01.032

  5. Bencherif H, Dehimi L, Pezzimenti F, Yousfi A (2018) Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. In 2018 international conference on applied smart Systems (ICASS). IEEE. 1-6 https://doi.org/10.1109/ICASS.2018.8651990

  6. Green MA (2003) Crystalline and thin-film silicon solar cells: state of the art and future potential. Sol Energy 74:181–192. https://doi.org/10.1016/S0038-092X(03)00187-7

    Article  CAS  Google Scholar 

  7. Chang TY, Chang CL, Lee HY, Lee PT (2010, June) Characteristics of MIS solar cells using sputtering SiO2 insulating layers. In 2010 35th IEEE photovoltaic specialists conference. IEEE. 001318-001321 https://doi.org/10.1109/PVSC.2010.5614304

  8. König D, Ebest G (1998) Novel thin film solar cell model with two antipolar MIS structures. Sol Energy Mater Sol Cells 56:67–74. https://doi.org/10.1016/S0927-0248(98)00126-3

    Article  Google Scholar 

  9. Marouf Y, Dehimi L, Bouzid F, Pezzimenti F, Della Corte FG (2018) Theoretical design and performance of InxGa1-xN single junction solar cell. Optik. 163:22–32. https://doi.org/10.1016/j.ijleo.2018.02.106

    Article  CAS  Google Scholar 

  10. Shousha AHM, El-Kosheiry MA (1997) Computer simulation of amorphous MIS solar cells. Renew Energy 11:409–420. https://doi.org/10.1016/S0960-1481(97)00013-X

    Article  CAS  Google Scholar 

  11. Bivour M, Reichel C, Hermle M, Glunz SW (2012) Improving the a-Si: H (p) rear emitter contact of n-type silicon solar cells. Sol Energy Mater Sol Cells 106:11–16. https://doi.org/10.1016/j.solmat.2012.06.036

    Article  CAS  Google Scholar 

  12. Hasan MM, Akther S, Chowdhury MIB (2017) Investigation of Graphene/Silicon-di Oxide/Gallium Arsenide Based MIS Solar Cell Using Silvaco TCAD. Proceedings of 14th Global E, 29, 30.” Proceedings of 14th Global E. 29–30

  13. Sze SM, Ng KK (2006) Physics of Semiconductor Devices, John Wiley & Sons Inc.

  14. Robertson J (2005) High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys. https://doi.org/10.1088/0034-4885/69/2/R02/meta

  15. Fossum JG, Lee DS (1982) A physical model for the dependence ofcarrier lifetime on doping density in nondegenerate silicon. Solid StateElectron 25:741–747. https://doi.org/10.1016/0038-1101(82)90203-9

    Article  CAS  Google Scholar 

  16. Groves C, Greenham NC (2008) Bimolecular recombination in polymer electronic devices. Phys Rev B 78(15):155205. https://doi.org/10.1103/PhysRevB.78.155205

    Article  CAS  Google Scholar 

  17. Lu, M. et al., 2009. Optimization of interdigitated back contact siliconheterojunction solar cells by two-dimensional numerical simulation.In: proceedings of 34th IEEE PVSC, Philadelphia, USA. doi: https://doi.org/10.1109/PVSC.2009.5411332

  18. Zeghdar K, Dehimi L, Pezzimenti F, Rao S, Della Corte FG (2019) Simulation and analysis of the current–voltage–temperature characteristics of Al/Ti/4H-SiC Schottkybarrier diodes. Jpn J Appl Phys 58:014002. https://doi.org/10.7567/1347-4065/aaf3ab/meta

    Article  Google Scholar 

  19. Pezzimenti F, Bencherif H, Yousfi A, Dehimi L (2019) Current-voltage analytical model and multiobjective optimization of design of a short channel gate-all-around-junctionless MOSFET. Solid State Electron 161:107642. https://doi.org/10.1016/j.sse.2019.107642

    Article  CAS  Google Scholar 

  20. Bencherif H, Dehimi L, Pezzimenti F, Della Corte FG (2019) Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A. https://doi.org/10.1007/s00339-019-2606-9

  21. Zeghdar K, Bencherif H, Dehimi L, Pezzimenti F, Della Corte FG (2019, October). Analysis of the current-voltage-temperature characteristics of Wl4H-SiC Schottky barrier diodes for high performance temperature sensors. In 2019 international semiconductor conference (CAS). IEEE. 277-280 https://doi.org/10.1109/SMICND.2019.8923929

  22. Terghini O, Dehimi L, Mefteh AM, Bencherif H (2020) Performance evaluation and comparison of monolithic and mechanically stacked dual tandem InGaP/GaAs Heterojunction on Ge cell: a TCAD study. Trans Electr Electron Mater 21:384–393. https://doi.org/10.1007/s42341-020-00191-2

    Article  Google Scholar 

  23. SILVACO Data Systems Inc2016 Silvaco ATLAS User’s manual,

  24. Optical properties of coating materials from Sopra S.A., website: http://www.soprasa.com, 2006

  25. Hlali S, Hizem N, Kalboussi A (2017) Electrical characteristics of metal–insulator–semiconductor and metal–insulator–semiconductor–insulator–metal capacitors under different high-k gate dielectrics investigated in the semi-classical and quantum mechanical models. Bull Mater Sci 40:67–78. https://doi.org/10.1007/s12034-016-1341-5

    Article  CAS  Google Scholar 

  26. Doghish MY, Ho FD (1993) A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application. IEEE Trans Electrondevices 39:2771–2780. https://doi.org/10.1109/16.168723

    Article  Google Scholar 

  27. Bencherif H, Dehimi L, Pezzimenti F, Yousfi A, Abdi M A, Saidi L, Della Corte F G (2020), Improved InxGa1_xP/GaAs /Ge tandem solar cell using light trapping engineering and multi-objective optimization approach. Optik https://doi.org/10.1016/j.ijleo.2020.165346

  28. Green MA (1979) The short-wavelength response of MIS solar cells. J Appl Phys 50:1116–1122. https://doi.org/10.1063/1.326090

    Article  CAS  Google Scholar 

  29. Gupta N (2011) Material selection for thin-film solar cells using multiple attribute decision making approach. Mater Des 32:1667–1671. https://doi.org/10.1016/j.matdes.2010.10.002

    Article  CAS  Google Scholar 

  30. Shewchun J, Singh R, Green AM (1977) Theory of metal insulator semiconductor solar cells. J Appl Phys 48:765–770. https://doi.org/10.1063/1.323667

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DGRSDT o f Ministry of Higher education of Algeria. The work was done in the unit of research of materials and renewable energies (URMER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dehimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Machiche, S., Dehimi, L., Bencherif, H. et al. The Role of High-K Dielectrics in Improving the Performance of Metal-Insulator-Semiconductor Solar Cells. Silicon 13, 3239–3247 (2021). https://doi.org/10.1007/s12633-020-00660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00660-6

Keywords

Navigation