Skip to main content
Log in

A Numerical Investigation of Heat Suppression in HEMT for Power Electronics Application

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, AlGaN/GaN High Electron Mobility Transistor (HEMT) with stacked passivation (Diamond/SiN) is proposed and investigated. The implementation of stacked passivation in HEMT has been shown to be effective in suppressing self-heating effect. Under the gate-terminal, the peak channel temperature of HEMT with stacked passivation is 384 K, whereas it is 393 K for conventional HEMT. The reduction of channel temperature in the proposed device is attributed to good heat-spreading via diamond. The thermal resistance (RTH) is extracted and it is found that RTH of proposed HEMT is 17% lower than that of the conventional HEMT. The transconductance of the proposed GaN-HEMT is also improved by 12%. Furthermore, the maximum drain current of 800 mA/mm at VGS = 0 V and VDS = 5 V is obtained for the proposed HEMT with a gate length of 0.25 μm. The proposed device is considered as one of the most attractive candidates for future high frequency and high-power applications over a wide range of operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H (2003) High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior. IEEE Trans On Electron Devices 50(12):2528–2535

    Article  CAS  Google Scholar 

  2. Ahsan SA, Ghosh S, Sharma K, Dasgupta A, Khandelwal S, Chauhan YS (2016) Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans Electron Devices 63(2):565–572

    Article  CAS  Google Scholar 

  3. Joshi V, Soni A, Tiwari SP, Senior Member IEEE, Shrivastava M, Senior Member IEEE (2016) A comprehensive computational modeling approach for AlGaN/GaN HEMTs. IEEETrans Nanotechnol 15(6):947–955

    Article  CAS  Google Scholar 

  4. Susai Lawrence Selvaraj, Takaaki Suzue, and Takashi Egawa (2009) Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers. IEEE Electron Device Lett 30 (6)

  5. Lu B (2010) Student Member, IEEE, and Tomás Palacios, “High Breakdown (> 1500 V) AlGaN/GaN HEMTs by Substrate-Transfer Technology,”. IEEE Electron Device Lett 31(9):951957

    Article  CAS  Google Scholar 

  6. Eldad Bahat-Treidel, Oliver Hilt, Frank Brunner, Victor Sidorov, Joachim Würfl, and Günther Tränkle, (2010) “AlGaN/GaN/AlGaN DH-HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates (MGFPs),” IEEE Trans On Electron Devices 57(6)

  7. Chini A, Buttari D, Coffie R, Heikman S, Keller S, Mishra UK (2004) 12 W/mm power density AlGaN/GaN HEMTs on sapphire substrate. Electron Lett 40(1):73–74

    Article  CAS  Google Scholar 

  8. Subramani NK, Couvidat J, Al Hajjar A, Nallatamby JC, Sommet R, Qur R (2017) Identification of GaN buffer traps in microwave power AlGaN/GaN HEMTs through low frequency S-parameters measurements and TCAD-based physical device simulations. IEEE J Electron Devices Soc 5(3):175–181

    Article  CAS  Google Scholar 

  9. Augustine Fletcher AS, Nirmal D (2017) A survey of gallium nitride HEMT for RF and high power application. Superlattice Microst 109:519–537

    Article  Google Scholar 

  10. Mishra UK, Shen L, Kazior TE, Wu Y-F (2008) GaN-based RF power devices and amplifiers. Proc IEEE 96(2):287–305

    Article  CAS  Google Scholar 

  11. Ajayan J, Nirmal D (2015) A review of InP/InAlAs/InGaAs based transistors for high frequency applications. Superlattice Microst 86:1–19

    Article  CAS  Google Scholar 

  12. Johnson EO (1965) Physical limitation on frequency and power parameters of transistors. RCA Rev 26:163–177

    Google Scholar 

  13. Baliga BJ (2010) Fundamentals of power semiconductor devices. Springer

  14. Augustine Fletcher AS, Nirmal D, Ajayan J, Arivazhagan L (2019) Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Int J Electron Commun (AEÜ) 99:325330

    Article  Google Scholar 

  15. Liang Z, Senior Member IEEE, San ZW, Hua Y-J, Liang L, Zhang S, Zhao ZG, Zhou HJ, Yin W-Y, Fellow IEEE (2017) Investigation on failure mechanisms of GaN HEMT caused by high-power microwave (HPM) pulses. IEEETrans Electromagnet Compat 59(3):902–909

    Article  Google Scholar 

  16. Ali Mohamed Darwish, Andrew J. Bayba, and H. Alfred Hung (2004) Thermal Resistance Calculation of AlGaN–GaN Devices. IEEE Trans Microwave Theory Tech 52(11)

  17. Liang Zhou, Senior Member, IEEE, Zheng Wei San, Yu-Jie Hua, Liang Lin, Shuo Zhang, Zheng Guo Zhao, Hai Jing Zhou, and Wen-Yan Yin (2017) Investigation on Failure Mechanisms of GaN HEMT Caused by High-Power Microwave (HPM) Pulses. IEEE Trans Electromag Compat 59(3)

  18. Arulkumaran S, Egawa T, Ishikawa H, Jimbo T, Sano Y (2004) Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si 3N4, and silicon oxynitride. Appl Phys Lett 84(4):613–615

    Article  CAS  Google Scholar 

  19. Gila B et al (2006) Oxide dielectrics for reliable passivation of AlGaN/GaN HEMTs and insulated gates. ECS Trans 3(5):141–150

    Article  CAS  Google Scholar 

  20. Ajayan J, Nirmal D, Prajoon P, Charles Pravin J (2017) Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications. Int J Electron Commun 79:151–157

    Article  Google Scholar 

  21. X. Wang et al. (2012) Atomic layer deposition of Sc2O3 for passivating AlGaN/GaN high electron mobility transistor devices. Appl Phys Lett 101(23)

  22. Tan WS, Houston PA, Parbrook PJ, Hill G, Airey RJ (2002) Comparison of different surface passivation dielectrics in AlGaN/GaN heterostructure field-effect transistors. J Phys D Appl Phys 35(7):595–598

    Article  CAS  Google Scholar 

  23. Tan WS, Uren MJ, Houston PA, Green RT, Balmer RS, Martin T (2006) Surface leakage currents in SiNx passivated AlGaN/GaN HFETs. IEEE Electron Device Lett 27(1):1–3

    Article  CAS  Google Scholar 

  24. Jebalina BK, Shobha Rekha A, Prajoona P, Mohan Kumarb N, Nirmal D (Dec. 2015) The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs. Microelectron J 46(12):1387–1391

    Article  Google Scholar 

  25. Pei Y, Rajan S, Higashiwaki M, Chen Z, DenBaars SP, Mishra UK (Apr. 2009) Effect of dielectric thickness on power performance of AlGaN/GaN HEMTs. IEEE Electron Device Lett 30(4):313–315

    Article  Google Scholar 

  26. Gao F, Chen D, Lu B, Tuller HL, Thompson CV, Keller S, Mishra UK, Palacios T (Oct. 2012) Impact of moisture and fluorocarbon passivation on the current collapse of AlGaN/GaN HEMTs. IEEE Electron Device Lett 33(10):1378–1380

    Article  CAS  Google Scholar 

  27. N. Ramanan, B. Lee, C. Kirkpatrick, R. Suri, and V. Misra ( 2013) Properties of atomic layer deposited dielectrics for AlGaN/GaN device passivation. Semicond Sci Technol 28(7)

  28. Ajayan J, Nirmal D, Ravichandran T, Mohankumar P, Prajoon P, Arivazhagan L, Sarkar CK (2018) InP high electron mobility transistors for submillimetre wave and terahertz frequency applications: A review. Int J Electron Commun (AEÜ) 94:199214

    Article  Google Scholar 

  29. J. Kotani, M. Tajima, S. Kasai, and T. Hashizume ( 2007) Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures. Appl Phys Lett 91(9)

  30. Nirmal D, Arivazhagan L, Augustine Fletcher AS, Ajayan J, Prajoon P (2018) Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application. Superlattices Microstruct

  31. JP Holman (2010) Heat Transfer TENTH EDITION” McGraw-Hill Series in Mechanical Engineering

  32. F. Iucolano, G. Greco, and F. Roccaforte (2013) Correlation between microstructure and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au Ohmic contacts to AlGaN/GaN heterostructures. Appl Phys Lett 103(20)

  33. Felice Crupi, Senior Member, IEEE, Paolo Magnone, Sebastiano Strangio, Ferdinando Iucolano, and Gaudenzio Meneghesso “Low Frequency Noise and Gate Bias Instability in Normally OFF AlGaN/GaN HEMTs. IEEETrans On Electron Devices 63(5)

  34. Maziar Farahmand (2001) Member, IEEE, Carlo Garetto, Enrico Bellotti, Kevin F. Brennan, Senior Member, IEEE, Michele Goano, Member, IEEE, Enrico Ghillino, Giovanni Ghione, Senior Member, IEEE, John D. Albrecht, and P. Paul Ruden, “Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Trans On Electron Devices 48(3)

  35. Anwar Jarndal, Arivazhagan L and D Nirmal (2020) On the Performance of GaN on Silicon, SiliconCarbide and Diamond Substrates. Int J RF Microwave Comput Aided Eng

  36. Basumatary B, Maity S (2016) Deboraj Muchahary Improvement of drain current of AlGaN/GaN-HEMT through the modification of negative differential conductance (NDC), current collapse, self-heating and optimization of doublehetero structure. Superlattice Microst 97:606–616

    Article  CAS  Google Scholar 

  37. Kevin R. Bagnall, Omair I. Saadat, Sameer Joglekar, Tomás Palacios (2017) Experimental Characterization of the Thermal Time Constants of GaN HEMTs Via Micro-Raman Thermometry. IEEE Trans On Electron Devices 64(5)

  38. Cho J, Bozorg-Grayeli E, Altman DH, Asheghi M, Goodson KE (2012) Low thermal resistances at GaN–SiC interfaces for HEMT technology. IEEE Electron Device Lett 33(3):378–380

    Article  CAS  Google Scholar 

  39. J. Cho, Y. Li, W. H. Hoke, D. H. Altman, M. Asheghi, and K. E. Goodson (2014) Phonon scattering in strained transition layers for GaN heteroepitaxy. Phys. Rev. B, Condens. Matter 89

  40. Silicon Carbide Substrates and Epitaxy (2011) Cree, Inc., Durham, NC, USA

  41. Burgemeister EA, von Muench W, Pettenpaul E (Sep. 1979) Thermal conductivity and electrical properties of 6H silicon carbide. J Appl Phys 50(9):5790–5794

    Article  CAS  Google Scholar 

  42. Toriumi A, Yoshimi M, Iwase M, Akiyama Y, Taniguchi K (Jul. 1987) A study of photon emission from n-channel MOSFETs. IEEE Trans Electron Devices ED-34(7):1501–1508

    Article  CAS  Google Scholar 

  43. Milan Tapajna, Richard J. T. Simms, Yi Pei, Student Member, IEEE, Umesh K. Mishra, and Martin Kuball (2010) Integrated Optical and Electrical Analysis: Identifying Location and Properties of Traps in AlGaN/GaN HEMTs. IEEE Electron Device Lett 31 (7)

  44. Alomari M, Dipalo M, Rossi S, Diforte-Poisson M-A, Delage S, Carlin J-F, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E (2011) Diamond overgrown InAlN/GaN HEMT. Diam Relat Mater 20(4):604–608

    Article  CAS  Google Scholar 

  45. Zou B, Sun H, Guo H, Dai B, Zhu J (2019) Thermal characteristics of GaN-on-diamond HEMTs: impact of anisotropic and inhomogeneous thermal conductivity of polycrystalline diamond. Diam Relat Mater 95:28–35

    Article  CAS  Google Scholar 

  46. Guo H, Kong Y, Chen T (2017) Thermal simulation of high power GaN-on-diamond substrates for HEMT applications. Diam Relat Mater 73:260–266

    Article  CAS  Google Scholar 

  47. Dipalo M, Gaoa Z, Scharpf J, Pietzka C, Alomari M, Medjdoub F, Carlin J-F, Grandjean N, Delage S, Kohn E (2009) Combining diamond electrodes with GaN heterostructures for harsh environment ISFETs. Diam Relat Mater 18(5–8):884–889

    Article  CAS  Google Scholar 

  48. Francis D, Faili F, Babić D, Ejeckam F, Nurmikko A, Maris H (2010) Formation and characterization of 4-inch GaN-on-diamond substrates. Diam Relat Mater 19(2–3):229–233

    Article  CAS  Google Scholar 

  49. MT Alam, MP Manoharan, MA Haque C Muratore, A Voevodin (2012) Influence of strain on thermal conductivity of silicon nitride thin films. J Micromech Microeng 22

  50. Ejeckam F, Francis D, Faili F, Lowe F (2014) GaN-on-Diamond: the next GaN. Microw J

Download references

Acknowledgements

This work is supported by Defence Research and Development Organization, India (Grant No. ERIP/ER/DGMED&CoS/990616501/M/01/1646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nirmal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arivazhagan, L., Nirmal, D., Reddy, P.P.K. et al. A Numerical Investigation of Heat Suppression in HEMT for Power Electronics Application. Silicon 13, 3039–3046 (2021). https://doi.org/10.1007/s12633-020-00647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00647-3

Keywords

Navigation