Skip to main content
Log in

Simulation of Growth of Silicon Thin Films on Textured and Non-textured Surface: A Comparative Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We analyzed the difference in growth of thin film silicon layers when deposited on a textured and a non-textured surface. In this investigation characteristics of two solar cells were compared, where one cell was prepared on a textured surface (Cell-A) while the other prepared on a non-textured surface (Cell-B). The intrinsic film deposited on a textured surface was found more defective (2.4 × 1017 cm−3) than that deposited on a flat surface (3.2 × 1016 cm−3). Lower effective flux density of SiH3 precursors on the textured surface can be one of the reasons for higher defect density in the film deposited on textured surface. An Improved light coupling can be achieved by using a thinner doped window layer. The optimum thicknesses of active layers (d) were estimated for best power conversion efficiency (PCE) of Cell-A & Cell-B, and found to be 135 nm & 300 nm respectively. As higher optical transmission of a wide band gap p-type doped window layer is one of the primary concerns, we estimated the effect of using thinner p-type layer for improving optical transmission. By changing the thickness from 15 nm to 3 nm, we observed that the short circuit current density (Jsc) increased from 16.4 mA/cm2 to 20.96 mA/cm2 and PCE increased from 9.4% to 12.3%. Furthermore, it was also noticed that all other device parameters also increased in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sai H, Matsui T, Kumagai H, Matsubara K (2018) Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Appl. Phys. Express 11:022301. https://doi.org/10.7567/APEX.11.022301

    Article  Google Scholar 

  2. Rajanna PM, Gilshteyn EP, Yagafarov T, Aleekseeva AK, Anisimov AS, Neumüller A, Sergeev O, Bereznev S, Maricheva J, Nasibulin AG (2018) Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film. Nanotechnology 29:105404. https://doi.org/10.1088/1361-6528/aaa647

    Article  CAS  PubMed  Google Scholar 

  3. Yoon K, Kim Y, Park J, Shin CH, Baek S, Jang J, Iftiquar SM, Yi J (2011) Preparation and characterization of p-type hydrogenated amorphous silicon oxide film and its application to solar cell. J Non-Cryst Solids 357:2826–2832. https://doi.org/10.1016/j.jnoncrysol.2011.03.009

    Article  CAS  Google Scholar 

  4. Yamaguchi M, Lee KH, Araki K, Kojima N (2018) A review of recent progress in heterogeneous silicon tandem solar cells. J Phys D Appl Phys 51:133002. https://doi.org/10.1088/1361-6463/aaaf08

    Article  CAS  Google Scholar 

  5. Kim S, Park J, Phong PD, Shin C, Iftiquar SM, Yi J (2018) Improving the efficiency of rear emitter silicon solar cell using an optimized n-type silicon oxide front surface field layer. Sci Rep 8:10657. https://doi.org/10.1038/s41598-018-28823-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazzarella L, Morales-Vilches AB, Korte L, Schlatmann R, Stannowski B (2018) Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells. Sol Energ Mater Sol Cells 179:386–391. https://doi.org/10.1016/j.solmat.2018.01.034

    Article  CAS  Google Scholar 

  7. Kateb MN, Tobbeche S, Merazga A (2017) Influence of μc-Si:H tunnel recombination junction on the performance of a-Si:H/μc-Si:H tandem solar cell. Optik 139:152–165. https://doi.org/10.1016/j.ijleo.2017.03.099

    Article  CAS  Google Scholar 

  8. Cho J, Iftiquar SM, Pham DP, Jung J, Park J, Ahn S, Le AHT, Kim JS, Yi J (2017) Improvement in performance of tandem solar cell by applying buffer layer, back reflector and higher crystallinity of the microcrystalline Si active layer of bottom subcell. Thin Solid Films 639:56–63. https://doi.org/10.1016/j.tsf.2017.08.016

    Article  CAS  Google Scholar 

  9. Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Devices 29:300–305. https://doi.org/10.1109/T-ED.1982.20700

    Article  Google Scholar 

  10. Campbell P, Green MA (2001) High performance light trapping textures for monocrystalline silicon solar cells. Sol Energ Mater Sol Cells 65:369–375. https://doi.org/10.1016/S0927-0248(00)00115-X

    Article  CAS  Google Scholar 

  11. Iftiquar SM, Jang J, Park H, Shin C, Park J, Jung J, Kim S, Yi J (2014) Analysis of optical absorption and quantum efficiency due to light trapping in a n-i-p type amorphous silicon solar cell with textured back reflector. Phys Status Solidi A Appl Mater Sci 211:924–931. https://doi.org/10.1002/pssa.201330291

    Article  CAS  Google Scholar 

  12. Iftiquar SM, Jung J, Shin C, Park H, Park J, Jung J, Yi J (2015) Light management for enhanced efficiency of textured n-i-p type amorphous silicon solar cell. Sol Energ Mater Sol Cells 132:348–355. https://doi.org/10.1016/j.solmat.2014.09.011

    Article  CAS  Google Scholar 

  13. Sever M, Krč J, Topič M (2014) Prediction of defective regions in optimisation of surface textures in thin-film silicon solar cells using combined model of layer growth. Thin Solid Films 573:176–184. https://doi.org/10.1016/j.tsf.2014.11.053

    Article  CAS  Google Scholar 

  14. Park H, Iftiquar SM, Kim HW, Lee J, Le AHT, Yi J (2013) Diffused transmission and texture-induced defect with transparent conducting oxide front electrode of amorphous silicon solar cell. Semicond Sci Technol 28:115012. https://doi.org/10.1088/0268-1242/28/11/115012

    Article  CAS  Google Scholar 

  15. Ahn S, Iftiquar SM, Cho J, Le AHT, Park C, Park J, Lee H, Hong K, Kim JS, Bong S, Yi J (2018) Enhancing light absorption in a thin film silicon tandem solar cell fabricated on a reactive ion etched nano-structured glass surface. J Phys D 52:035502. https://doi.org/10.1088/1361-6463/aaebe6

    Article  CAS  Google Scholar 

  16. Park H, Iftiquar SM, Shin M, Kim H, Jung J, Kim S, Le AHT, Kim Y, Pham DP, Jeong JS, Yi J (2017) Fabrication of honeycomb textured glass substrate and nanotexturing of zinc oxide front electrode for its application in high efficiency thin film amorphous silicon solar cell. J Photonics Energy 7:025502. https://doi.org/10.1117/1.JPE.7.025502

    Article  Google Scholar 

  17. Stangl R, Haschke J, Leendertz C (2009) Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET, version 2.4. In: Rugescu RD (ed) SolarEnergy. Intech, Croatia, p 432 isbn: 978-953-307-052-0

    Google Scholar 

  18. Iftiquar SM, Yi J (2016) Low reverse saturation current density of amorphous silicon solar cell due to reduced thickness of active layer. J Electr Eng Technol 11:939–942. https://doi.org/10.5370/JEET.2016.11.4.939

    Article  Google Scholar 

  19. Phang JCH, Chan DSH, Phillips JR (1984) Accurate analytical method for the extraction of solar cell model parameters. Electron Lett 20:406–408

    Article  Google Scholar 

  20. Kim S, Iftiquar SM, Shin C, Park J, Yi J (2019) Investigation of p-type nanocrystalline silicon oxide thin film prepared at various growth temperatures. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.03.029

  21. Ma J, Ni J, Zhang J, Liu Q, Hou G, Chen X, Zhang X, Zhao Y (2014) In situ grown size-controlled silicon nanocrystals: a p type nanocrystalline-Si:H/a-SiCx:H superlattice (p-nc-Si:H/a-SiC x:H) approach. Sol Energ Mater Sol Cells 123:228–232. https://doi.org/10.1016/j.solmat.2014.01.031

    Article  CAS  Google Scholar 

  22. Iftiquar SM, Lee JC, Lee J, Kim Y, Jang J, Lee YJ, Yi J (2013) Light management and efficient carrier generation with a highly transparent window layer for a multijunction amorphous silicon solar cell. J. Photonics Energy 3:033098. https://doi.org/10.1117/1.JPE.3.033098

    Article  CAS  Google Scholar 

  23. Kirner S, Mazzarella L, Korte L, Stannowski B, Rech B, Schlatmann R (2015) Silicon Heterojunction solar cells with Nanocrystalline silicon oxide emitter: insights into charge carrier transport. IEEE J Photovoltaics 5:1601–1605, 7283542. https://doi.org/10.1109/JPHOTOV.2015.2479461

    Article  Google Scholar 

  24. Park J, Iftiquar SM, Lee S, Park H, Shin C, Jung J, Lee YJ, Balaji N, Yi J (2013) Reduction of tail state on boron doped hydrogenated amorphous silicon oxide films prepared at high hydrogen dilution. J Nanosci Nanotechnol 13:7826–7833. https://doi.org/10.1166/jnn.2013.8150

    Article  CAS  PubMed  Google Scholar 

  25. Pham DP, Kim S, Park J, Tuan Le AH, Cho J, Jung J, Iftiquar SM, Yi J (2017) Reduction in photocurrent loss and improvement in performance of single junction solar cell due to multistep grading of hydrogenated amorphous silicon germanium active layer. Silicon 10:1–9. https://doi.org/10.1007/s12633-016-9527-4

    Article  CAS  Google Scholar 

  26. Wilson JIB, McGill J (1978) Amorphous-silicon m. I. S. solar cells. IEE J Solid State Electron Devices 2:s7–s10

    Article  Google Scholar 

  27. Van Cleef MWM, Rath JK, Rubinelli FA, Van Der Werf CHM, Schropp REI, Van Der Weg WF (1997) Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells. J Appl Phys 82:6089–6095

    Article  Google Scholar 

  28. Liu W, Zhang L, Cong S, Chen R, Wu Z, Meng F, Shi Q, Liu Z (2018) Controllable a-Si:H/c-Si interface passivation by residual SiH4 molecules in H2 plasma. Sol Energ Mater Sol Cells 174:233–239. https://doi.org/10.1016/j.solmat.2017.09.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Iftiquar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iftiquar, S.M., Riaz, S.N. & Mahapatra, S. Simulation of Growth of Silicon Thin Films on Textured and Non-textured Surface: A Comparative Study. Silicon 13, 2701–2713 (2021). https://doi.org/10.1007/s12633-020-00624-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00624-w

Keywords

Navigation