Skip to main content

Advertisement

Log in

Effect of Different Constraint on Tribological Behaviour of Natural Fibre/Filler Reinforced Polymeric Composites: a Review

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present environmental concern has motivated researchers to develop bio-polymer based wear materials. In the recent review article focus has been made for proper utilization of natural resources for developing advanced wear resistance material. In order to develop polymer based composite materials with natural fibre and filler, various chemical treatments are focused in the review article. Apart from this the paper also concerned variety of bio-resources products for synthesis of new epoxy grade polymer material. The developed material can be well utilized in various fields such as automobile brake pad, griping material, building construction, heavy machinery, surface modification and improvement. The review work focused on various parameters that are associated with wear behaviour. i. A brief discussion about natural fibres, polymers, their applications and basics of tribology. ii. Effect of the natural filler/fibre weight percentage, orientation of fibre, fibre length, chemical treatment, fibre physical and mechanical properties and are studied. iii. Wear parameters such as amount applied load, sliding velocity, sliding distance, loading time duration, dry and wet condition are focused. The proper utilization of the each and every unutilized part of the bio-products are studied. The various section of the plant i.e. steam, leaf, roots, skin etc. proper utilization of each part of the plant based on its application are studied with suitable epoxy polymer material. The work will most beneficial for improving the wear material in line with tribological behaviour, with proper utilization of natural waste products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. May-Pat A, Valadez-Gonzalez A, Herrera-Franco PJ (2013) ´effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 32:1114–1122

    Article  CAS  Google Scholar 

  2. Malhotra N, Sheikh K, Rani S (2012) A review on mechanical characterization of natural fiber reinforced polymer composites. J Eng Res Stud 3:75–80

    Google Scholar 

  3. Sarkis J, Koo C, Watson RT (2013) Green information systems & technologies–this generation and beyond: introduction to the special issue. Inf Syst Front 15:695–704

    Article  Google Scholar 

  4. Olusegun DS, Stephen A, Adekanye TA (2012) Assessing mechanical properties of natural fibre reinforced composites for engineering applications. J Miner Mater Char Eng 11:780–784

    Google Scholar 

  5. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  6. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  7. Jawaid MHPS, Khalil HA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  8. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polym 11(10):1667

    Article  CAS  Google Scholar 

  9. Clyne TW, Hull D (2019) An introduction to composite materials3rd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  10. Zagho MM, Hussein EA, Elzatahry AA (2018) Recent overviews in functional polymer composites for biomedical applications. Polym 10:739

    Article  CAS  Google Scholar 

  11. Rohit K, Dixit S (2016) A review-future aspect of natural fiber reinforced composite. Polym Renewable Resour 7:43–59

    Google Scholar 

  12. Kumar R, Kumar K, Bhowmik S (2018) Assessment and response of treated Cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. J Polym Environ 26:2522–2535

    Article  CAS  Google Scholar 

  13. Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32:308–315

    Article  CAS  Google Scholar 

  14. Kumar R, Kumar K, Sahoo P, Bhowmik S (2014) Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Mater Sci 6:551–556

    Article  CAS  Google Scholar 

  15. Kumar, R., Bhowmik, S., Kumar, K., & Davim, J. P. (2019). Perspective on the mechanical response of pineapple leaf filler/toughened epoxy composites under diverse constraints. Polym Bull, 1-25

  16. Mochane MJ, Mokhena TC, Mokhothu TH, Mtibe A, Sadiku ER, Ray SS, Daramola OO (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 13:159–198

    Article  CAS  Google Scholar 

  17. Nirmal U, Hashim J, Ahmad MM (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104

    Article  CAS  Google Scholar 

  18. Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    Article  CAS  Google Scholar 

  19. Izani MN, Paridah MT, Anwar UMK, Nor MM, H’ng PS (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos Part B: Eng 45:1251–1257

    Article  CAS  Google Scholar 

  20. Tawakkal IS, Cran MJ, Bigger SW (2014) Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Ind Crop Prod 61:74–83

    Article  CAS  Google Scholar 

  21. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  22. Khalil HA, Bhat IU, Jawaid H, Zaidon MA., Hermawan D, & Hadi YS, (2012). Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

  23. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  24. Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1:97–112

    Article  CAS  Google Scholar 

  25. Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crop Prod 33:7–22

    Article  CAS  Google Scholar 

  26. Punyamurthy R, Sampathkumar D, Ranganagowda RPG, Bennehalli B, Srinivasa CV (2017) Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J King Saud Univ Eng Sci 29(3):289–294

    Google Scholar 

  27. Rainey TJ (2009). A study into the permeability and compressibility of Australian bagasse pulp. PhD Thesis, Brisbane (Australia): Queensland University of Technology,

  28. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:359–376

    Article  CAS  Google Scholar 

  29. Preethi P, Balakrishna Murthy G (2013) Physical and chemical properties of banana fibre extracted from commercial banana cultivars grown in Tamilnadu state. Agrotechnol S11 8:1–3

    Google Scholar 

  30. Nadirah WW, Jawaid M, Al Masri AA, Khalil HA, Suhaily SS, Mohamed AR (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20:404–411

    Article  CAS  Google Scholar 

  31. Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    Article  CAS  Google Scholar 

  32. Hänninen T, Thygesen A, Mehmood S, Madsen B, Hughes M (2012) Mechanical processing of bast fibres: the occurrence of damage and its effect on fibre structure. Ind Crop Prod 39:7–11

    Article  CAS  Google Scholar 

  33. Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246

    Article  CAS  Google Scholar 

  34. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  PubMed  Google Scholar 

  35. Dai D, Fan M (2014) Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. Natural Fibre Composites, Woodhead Publishing:3–65

  36. Gouda K, Bhowmik S, Das B (2020) Thermomechanical behavior of graphene nanoplatelets and bamboo micro filler incorporated epoxy hybrid composites. Mater Res Express 7:015328

    Article  CAS  Google Scholar 

  37. Sreekala MS, Kumaran MG, Thomas S (2001) Stress relaxation behaviour in oil palm fibres. Mater Letters 50:263–273

    Article  CAS  Google Scholar 

  38. Jayamani E, Hamdan S, Rahman MR, Bakri MKB (2014) Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Procedia Eng 97:545–554

    Article  CAS  Google Scholar 

  39. Pan Y, Zhong Z (2015) A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption. Mech Mater 85:7–15

    Article  Google Scholar 

  40. Ren B, Mizue T, Goda K, Noda J (2012) Effects of fluctuation of fibre orientation on tensile properties of flax sliver-reinforced green composites. Compos Struct 94(12):3457–3464

    Article  Google Scholar 

  41. Ramesh M, Atreya TSA, Aswin US, Eashwar H, Deepa C (2014) Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng 97:563–572

    Article  CAS  Google Scholar 

  42. Boopathi L, Sampath PS, Mylsamy K (2012) Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos Part B: Eng 43(8):3044–3052

    Article  CAS  Google Scholar 

  43. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials. I Hemp fibers, J Mater Sci 41:2483–2496

    Article  CAS  Google Scholar 

  44. Sen T, Reddy HJ (2011) Various industrial applications of hemp, kenaf, flax and ramie natural fibres. Int J Innovation Manag Technol 2:192–198

    Google Scholar 

  45. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review, eXPRESS Polym. Lett. 9:546–575

    Google Scholar 

  46. Marrot L, Lefeuvre A, Pontoire B, Bourmaud A, Baley C (2013) Analysis of the hemp fiber mechanical properties and their scattering (fedora 17). Ind Crop Prod 51:317–327

    Article  CAS  Google Scholar 

  47. Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113

    Article  Google Scholar 

  48. Udoeyo FF, Adetifa A (2012) Characteristics of kenaf fiber-reinforced mortar composites. Int J Res Rev Appl Sci 12:339–353

    Google Scholar 

  49. Ramnath BV, Manickavasagam VM, Elanchezhian C, Krishna CV, Karthik S, Saravanan K (2014) Determination of mechanical properties of intra-layer abaca–jute–glass fiber reinforced composite. Mater Des 60:643–652

    Article  Google Scholar 

  50. Mahjoub R, Bin Mohamad Yatim J, Sam M, Rahman A (2013) A review of structural performance of oil palm empty fruit bunch fiber in polymer composites. Adv Mater Sci Eng 2013:1–9. https://doi.org/10.1155/2013/415359

    Article  CAS  Google Scholar 

  51. Yusriah L, Sapuan SM, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180

    Article  CAS  Google Scholar 

  52. Mwaikambo L (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7:121

    Google Scholar 

  53. Hossain MK, Karim MR, Chowdhury MR, Imam MA, Hosur M, Jeelani S, Farag R (2014) Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Ind Crop Prod 58:78–90

    Article  CAS  Google Scholar 

  54. Gonzalez-Murillo C, Ansell M (2009) Mechanical properties of henequen fibre/epoxy resin composites. Mech Compos Mater 45:435–442

    Article  CAS  Google Scholar 

  55. Harish S, Michael DP, Bensely A, Lal DM, Rajadurai A (2009) Mechanical property evaluation of natural fiber coir composite. Mater Charact 60:44–49

    Article  CAS  Google Scholar 

  56. Pothan LA, Thomas S, Groeninckx G (2006) The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos Part A: Appl Sci Manuf 37:1260–1269

    Article  CAS  Google Scholar 

  57. Rao PD, Rao DV, Naidu AL, Bahubalendruni MR (2017) Mechanical properties of banana fiber reinforced composites and manufacturing techniques: a review. Int J Res Develop Technol 8:2349–3585

    Google Scholar 

  58. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol: J Polym Process Inst 18:351–363

    Article  CAS  Google Scholar 

  59. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos Part B: Eng 174:106927

    Article  CAS  Google Scholar 

  60. Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91:255–261

    Article  CAS  Google Scholar 

  61. Célino A, Fréour S, Jacquemin F, Casari P (2014) The hygroscopic behavior of plant fibers: a review. Front chem 1:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado DT (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82:1090–1096

    Article  CAS  Google Scholar 

  63. Wongsriraksa P, Togashi K, Nakai A, Hamada H (2013) Continuous natural fiber reinforced thermoplastic composites by fiber surface modification. Adv Mech Eng 5:685104. https://doi.org/10.1155/2013/685104

    Article  Google Scholar 

  64. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59:1303–1309

    Article  CAS  Google Scholar 

  65. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  66. Hossain SI, Hasan M, Hasan MN, Hassan A (2013) Effect of chemical treatment on physical, mechanical and thermal properties of ladies finger natural fiber. Adv Mater Sci Eng 2013:1–6

    Google Scholar 

  67. Tran TPT, Bénézet JC, Bergeret A (2014) Rice and einkorn wheat husks reinforced poly (lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crop Prod 58:111–124

    Article  CAS  Google Scholar 

  68. Luo H, Xiong G, Ma C, Chang P, Yao F, Zhu Y, Wan Y (2014) Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites. Polym Test 39:45–52

    Article  CAS  Google Scholar 

  69. O'donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145

    Article  CAS  Google Scholar 

  70. Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57:67–79

    Article  CAS  Google Scholar 

  71. Ismail H, Rusli A, Rashid AA (2005) Maleated natural rubber as a coupling agent for paper sludge filled natural rubber composites. Polym Test 24:856–862

    Article  CAS  Google Scholar 

  72. Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24:694–698

    Article  CAS  Google Scholar 

  73. Corrales F, Vilaseca F, Llop M, Girones J, Mendez JA, Mutje P (2007) Chemical modification of jute fibers for the production of green-composites. J Hazard Mater 144:730–735

    Article  CAS  PubMed  Google Scholar 

  74. He L, Li X, Li W, Yuan J, Zhou H (2012) A method for determining reactive hydroxyl groups in natural fibers: application to ramie fiber and its modification. Carbohydr Res 348:95–98

    Article  CAS  PubMed  Google Scholar 

  75. Hidayat A, Tachibana S (2012) Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus. Int Biodeterior Biodegrad 71:50–54

    Article  CAS  Google Scholar 

  76. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B: Eng 43:2883–2892

    Article  CAS  Google Scholar 

  77. Xie K, Liu H, Wang X (2009) Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohydr Polym 78:538–542

    Article  CAS  Google Scholar 

  78. Pıhtılı H, Tosun N (2002) Investigation of the wear behaviour of a glass-fibre-reinforced composite and plain polyester resin. Compos Sci Technol 62:367–370

    Article  Google Scholar 

  79. Chand N, Naik A, Neogi S (2000) Three-body abrasive wear of short glass fibre polyester composite. Wear 242:38–46

    Article  CAS  Google Scholar 

  80. El-Sayed AA, El-Sherbiny MG, Abo-El-Ezz AS, Aggag GA (1995) Friction and wear properties of polymeric composite materials for bearing applications. Wear 184:45–53

    Article  CAS  Google Scholar 

  81. Rubenstein M, Burdekin M (1979) Wear assessment of epoxy composites used for machine slideways. Wear 55:131–142

    Article  CAS  Google Scholar 

  82. Jacobs O, Jaskulka R, Yang F, Wu W (2004) Sliding wear of epoxy compounds against different counterparts under dry and aqueous conditions. Wear 256:9–15

    Article  CAS  Google Scholar 

  83. Xing XS, Li RKY (2004) Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles. Wear 256:21–26

    Article  CAS  Google Scholar 

  84. Werner P, Altstädt V, Jaskulka R, Jacobs O, Sandler JK, Shaffer MS, Windle AH (2004) Tribological behaviour of carbon-nanofibre-reinforced poly (ether ether ketone). Wear 257:1006–1014

    Article  CAS  Google Scholar 

  85. Tomescu L, Rı̂pă M, Vasilescu E, Georgescu C (2003). Surface profiles of composites with PTFE matrix. J Mater Process Technol 143:384–389

  86. Jia JH, Zhou HD, Gao SQ, Chen JM (2003) A comparative investigation of the friction and wear behavior of polyimide composites under dry sliding and water-lubricated condition. Mater Sci Eng A 356:48–53

    Article  CAS  Google Scholar 

  87. Franklin SE, De Kraker A (2003) Investigation of counterface surface topography effects on the wear and transfer behaviour of a POM–20% PTFE composite. Wear 255:766–773

    Article  CAS  Google Scholar 

  88. Rajesh JJ, Bijwe J, Tewari US (2002) Abrasive wear performance of various polyamides. Wear 252:769–776

    Article  CAS  Google Scholar 

  89. Rajesh JJ, Bijwe J (2004) Influence of fillers on the low amplitude oscillating wear behaviour of polyamide 11. Wear 256:1–8

    Article  CAS  Google Scholar 

  90. Cayer-Barrioz J, Mazuyer D, Kapsa P, Chateauminois A, Bouquerel F (2003) On the mechanisms of abrasive wear of polyamide fibres. Wear 255:751–757

    Article  CAS  Google Scholar 

  91. Kurokawa M, Uchiyama Y, Iwai T, Nagai S (2003) Performance of plastic gear made of carbon fiber reinforced polyamide 12. Wear 254:468–473

    Article  CAS  Google Scholar 

  92. Affatato S, Bersaglia G, Emiliani D, Foltran I, Taddei P, Reggiani M, Toni A (2003) The performance of gamma-and EtO-sterilised UHMWPE acetabular cups tested under severe simulator conditions. Part 2: wear particle characteristics with isolation protocols. Biomater 24:4045–4055

    Article  CAS  Google Scholar 

  93. Liu G, Chen Y, Li H (2004) A study on sliding wear mechanism of ultrahigh molecular weight polyethylene/polypropylene blends. Wear 256:1088–1094

    Article  CAS  Google Scholar 

  94. Guofang G, Huayong Y, Xin F (2004) Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding. Wear 256:88–94

    Article  CAS  Google Scholar 

  95. Valenza A, Visco AM, Torrisi L, Campo N (2004) Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation. Polym 45:1707–1715

    Article  CAS  Google Scholar 

  96. Yang F, Hlavacek V (1999) Improvement of PVC wearability by addition of additives. Powder Technol 103:182–188

    Article  CAS  Google Scholar 

  97. Baptista APM, do Carmo Vaz, M. (1993) Comparative wear testing of flooring materials. Wear 162:990–995

  98. Lee JH, Xu GH, Liang H (2001) Experimental and numerical analysis of friction and wear behavior of polycarbonate. Wear 251:1541–1556

    Article  Google Scholar 

  99. Singha AS, Rana RK (2012) Natural fiber reinforced polystyrene composites: effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Mater Des 41:289–297

    Article  CAS  Google Scholar 

  100. Bergstrom J, Thuvander F, Devos P, Boher C (2001) Wear of die materials in full scale plastic injection moulding of glass fibre reinforced polycarbonate. Wear 251:1511–1521

    Article  Google Scholar 

  101. Shanks RA (2013) General purpose elastomers: structure, chemistry, physics and performance. In advances in elastomers I (pp. 11–45). Springer, Berlin, Heidelberg

    Google Scholar 

  102. Keller MW, White SR, Sottos NR (2007) A self-healing poly (dimethyl siloxane) elastomer. Adv Funct Mater 17:2399–2404

    Article  CAS  Google Scholar 

  103. Keller MW, White SR, Sottos NR (2008) Torsion fatigue response of self-healing poly (dimethylsiloxane) elastomers. Polym 49:3136–3145

    Article  CAS  Google Scholar 

  104. Mensah B, Agyei-Tuffour B, Nyankson E, Bensah YD, Dodoo-Arhin D, Bediako JK, Yaya A (2018) Preparation and characterization of rubber blends for industrial Tire tread fabrication. Int J Polym Sci 2018:1–12. https://doi.org/10.1155/2018/2473286

    Article  CAS  Google Scholar 

  105. Srivastava VK, Basak GC, Maiti M, Jasra RV (2017) Synthesis and utilization of epoxidized polybutadiene rubber as an alternate compatibilizer in green-tire composites. Int J Ind Chem 8:411–424

    Article  CAS  Google Scholar 

  106. Sienkiewicz M, Janik H, Borzędowska-Labuda K, Kucińska-Lipka J (2017) Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. J Clean Prod 147:560–571

    Article  CAS  Google Scholar 

  107. Saeed F, Ansarifar A, Ellis RJ, Haile-Meskel Y, Irfan MS (2012) Two advanced styrene-butadiene/polybutadiene rubber blends filled with a silanized silica nanofiller for potential use in passenger car tire tread compound. J Appl Polym Sci 123:1518–1529

    Article  CAS  Google Scholar 

  108. Stachowiak GW (2017) How tribology has been helping us to advance and to survive. Frict 5:233–247

    Article  Google Scholar 

  109. Mahesha CR, Shivarudraiah NM, Suprabha R (2017) Three body abrasive wear studies on nanoclay/nanoTiO2 filled basalt-epoxy composites. Mater Today: Proc 4(2):3979–3986

    Google Scholar 

  110. Jost HP (2006) Tribology: how a word was coined 40 years ago. Tribol & lubr Technol 62(3):24

    Google Scholar 

  111. Unal H, Saylan T, Mimaroglu A (2014) Thermal, mechanical and tribological performance of polymer composites rubbed against polymer composites in application in electrical contact breakers. Proc Inst Mech Eng, Part J: J Eng Tribol 228:608–615

    Article  CAS  Google Scholar 

  112. Zhang X, Pei X, Wang Q, Wang T (2015) Friction and wear of potassium titanate whisker filled carbon fabric/phenolic polymer composites. J Tribol 137:1–6

    Article  CAS  Google Scholar 

  113. Lv M, Zheng F, Wang Q, Wang T, Liang Y (2015) Friction and wear behaviours of carbon and aramid fibers reinforced polyimide composites in simulated space environment. Tribol Int 92:246–254

    Article  CAS  Google Scholar 

  114. Bhowmick M, Mukhopadhyay S, Alagirusamy R (2012) Mechanical properties of natural fibre-reinforced composites. Text Prog 44:85–140

    Article  Google Scholar 

  115. Tang G, Hu X, Sun DJ, Li XL, Chen QL, Wang W (2016) The research on the friction and wear properties of ionic liquid-treated cellulose fibre-filled polyoxymethylene composites. J Thermoplast Compos Mater 29:270–280

    Article  CAS  Google Scholar 

  116. Yousif BF, Lau ST, McWilliam S (2010) Polyester composite based on betelnut fibre for tribological applications. Tribol Int 43:503–511

    Article  CAS  Google Scholar 

  117. Suh, N. P. (1986). Tribophysics. Pretice-hall, Englewood cliffs, New Jersey 07632, USA

  118. Chand N, Fahim M (2008) Tribology of natural fiber polymer composites. Wood head publishing, Cambridge, England

    Book  Google Scholar 

  119. Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: friction, Wear and lubrication at the atomic scale. Nature 374:607–616

    Article  CAS  Google Scholar 

  120. Bhushan B (1997) Micro/Nanotribology and its applications, NATO ASI series E: applied sciences, vol 330. Kluwer Academic, Dordrecht, Netherland

    Book  Google Scholar 

  121. Bhushan B (1999) Handbook of micro/NanotribologySecond edn. CRC Press, Boca Raton, Florida

  122. Stevenson ANJ, Hutchings IM (1996) Development of the dry sand/rubber wheel abrasion test. Wear 195:232–240

    Article  CAS  Google Scholar 

  123. Blickensderfer R, Laird G (1988) A pin-on-drum abrasive wear test and comparison with other pin tests. J Test Eval 16:516–526

    Article  Google Scholar 

  124. Yousif BF, Nirmal U, Wong KJ (2010) Three-body abrasion on wear and frictional performance of treated betelnut fibre reinforced epoxy (T-BFRE) composite. Mater Des 31:4514–4521

    Article  CAS  Google Scholar 

  125. Pıhtılı H, Tosun N (2002) Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites. Wear 252:979–984

    Article  Google Scholar 

  126. Mergler YJ, Schaake RP, Huis AJ (2004) Material transfer of POM in sliding contact. Wear 256:294–301

    Article  CAS  Google Scholar 

  127. Nirmal U, Hashim J, Lau STW (2011) Testing methods in tribology of polymeric composites. Int J Mech Mater Eng 6:367–373

    Google Scholar 

  128. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    Article  CAS  Google Scholar 

  129. Suddell BC, (2008) Industrial fibres: recent and current developments, In Proc Symp Nat Fibres, 20:71–82, FAO, CFC, Rome, Italy

  130. Pickering K, (2008) Ed., properties and performance of natural-fibre composites, Woodhead publishing, Cambridge, UK

  131. Mohanty AK, Misra M, & Drzal LT, (2005), Eds., Natural fibers, biopolymers, and biocomposites, Boca Raton, CRC Press

  132. Davoodi MM, Sapuan SM, Ahmad D, Aidy A, Khalina A, Jonoobi M (2011) Concept selection of car bumper beam with developed hybrid bio-composite material. Mater Des 32:4857–4865

    Article  CAS  Google Scholar 

  133. Nasir RM, Montaha MRA, Radha V, Saad AY, & Gitano-Briggs, HW, (2013). Tribological performance of resin impregnated gunny (RIG) and resin reinforced honeycomb (RRH) material composites. Mater Des 48:34–43

  134. Yallew TB, Kumar P, Singh I (2014) Sliding wear properties of jute fabric reinforced polypropylene composites. Procedia Eng 97:402–411

    Article  CAS  Google Scholar 

  135. Vijaya kumar N, Gowthami Priyanaka V, Srikanth K (2014) Evaluation of wear properties of jute reinforced polypropylene composite, Int J Eng Res Technol 3:1212–1215

  136. Mishra V, Biswas S (2016) Three-body abrasive wear behavior of short jute fiber reinforced epoxy composites. Polym Compos 37:270–278

    Article  CAS  Google Scholar 

  137. Swain PTR, Biswas S (2017) Abrasive Wear behaviour of surface modified jute fiber reinforced epoxy composites. Mater Res 20:661–674

    Article  CAS  Google Scholar 

  138. Alshammari FZ, Saleh KH, Yousif BF, Alajmi A, Shalwan A, Alotaibi JG (2018) The influence of fibre orientation on tribological performance of jute fibre reinforced epoxy composites considering different mat orientations. Tribol Ind 40(3):335–348

    Article  Google Scholar 

  139. Chin CW, & Yousif, BF, (2008) Adhesive and frictional behaviour of polymeric composites based on kenaf fibre. In Proc 2nd Int Conf Adv Tribol, 1:112-114

  140. Chin CW, Yousif BF (2009) Potential of kenaf fibres as reinforcement for tribological applications. Wear 267:1550–1557

    Article  CAS  Google Scholar 

  141. Narish S, Yousif BF, Rilling D (2011) Adhesive wear of thermoplastic composite based on kenaf fibres. Proc Inst Mech Eng, Part J: J Eng Tribol 225:101–109

    Article  CAS  Google Scholar 

  142. Singh N, Yousif BF, Rilling D (2011) Investigations on wear and frictional properties of kenaf fibre polyurethane composites under dry and wet contact conditions. Int J of Precis Technol 2:375–387

    Article  Google Scholar 

  143. Yousif, BF, & Chin CW, (2012) Epoxy composite based on kenaf fibers for tribological applications under wet contact conditions. Surf rev Lett 19: 1250050(1-6)

  144. Nordin NA, Yussof FM, Kasolang S, Salleh Z, Ahmad MA (2013) Wear rate of natural fibre: long kenaf composite. Procedia Eng 68:145–151

    Article  CAS  Google Scholar 

  145. Shuhimi FF, Abdollah MFB, Kalam MA, Hassan M, Amiruddin H (2016) Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribol Int 101:247–254

    Article  CAS  Google Scholar 

  146. Chang BP, Yong YF, Md Akil H, Md Nasir R (2017) Optimization on abrasive wear performance of Pultruded Kenaf-reinforced polymer composite using Taguchi method. In Key Eng Mater 739:42–49

    Article  Google Scholar 

  147. El-Tayeb NSM (2008) Tribo-characterization of natural fibre-reinforced polymer composite material. Proc Inst Mech Eng, Part J: J Eng Tribol 222:935–946

    Article  CAS  Google Scholar 

  148. El-Tayeb NSM (2009) Development and characterisation of low-cost polymeric composite materials. Mater Des 30:1151–1160

    Article  CAS  Google Scholar 

  149. Yallew TB, Kumar P, Singh I (2015) Sliding behaviour of woven industrial hemp fabric reinforced thermoplastic polymer composites. Int J Plast Technol 19:347–362

    Article  Google Scholar 

  150. Nishitani Y, Kajiyama T, Yamanaka T (2017) Effect of silane coupling agent on tribological properties of hemp fiber-reinforced plant-derived polyamide 1010 biomass composites. Mater 10:1040

    Article  CAS  Google Scholar 

  151. Chand N, Dwivedi UK (2008) Sliding wear and friction characteristics of sisal fibre reinforced polyester composites: effect of silane coupling agent and applied load. Polym Compos 29:280–284

    Article  CAS  Google Scholar 

  152. Bajpai PK, Singh I, Madaan J (2013) Frictional and adhesive wear performance of natural fibre reinforced polypropylene composites. Proc Inst Mech Eng, Part J: J Eng Tribol 227:385–392

    Article  CAS  Google Scholar 

  153. Maurya HO, Jha K, Tyagi YK (2017) Tribological behavior of short sisal fiber reinforced epoxy composite. Polym Compos 25:215–220

    Article  CAS  Google Scholar 

  154. Panda R, Tjong J, Nayak SK, Sain M (2017) Effect of alkyl phenol from cashew nutshell liquid and sisal fiber reinforcement on dry sliding Wear behavior of epoxy resin. Journal of Natural Fibers 14:747–758

    Article  CAS  Google Scholar 

  155. Mohanty JR, Das SN, Das HC (2014a) Tribological behavior of acrylic acid–modified date palm leaf–reinforced polyvinyl alcohol composite. Tribol Trans 57:546–552

    Article  CAS  Google Scholar 

  156. Mohanty JR, Das SN, Das HC (2014b). Effect of fiber content on abrasive wear behavior of date palm leaf reinforced polyvinyl pyrrolidone composite. ISRN Tribol, 2014. https://doi.org/10.1155/2014/453924

  157. Ibrahem RA (2015a) Effect of date palm seeds on the Tribological behaviour of polyester composites under different testing conditions. J Mater Sci Eng 4:1000206. https://doi.org/10.4172/2169-0022.1000206

    Article  CAS  Google Scholar 

  158. Supreeth S, Vinod B, LJS, (2014) Influence of fiber length on the tribological behaviour of short PALF reinforced bisphenol-a composite. Int J Eng Res Gen Sci 2:825–830

  159. Mylsamy K, Rajendran I (2011) Influence of fibre length on the wear behaviour of chopped agave Americana fibre reinforced epoxy composites. Tribol Lett 44:75–80

    Article  CAS  Google Scholar 

  160. Rajini N, Jappes JW, Suresha B, Rajakarunakaran S, Siva I, Azhagesan N (2014) Effect of organically modified montmorillonite clay on wear behavior of naturally woven coconut sheath/polyester composite. Proc Inst Mech Eng, Part J: J Eng Tribol 228:483–497

    Article  CAS  Google Scholar 

  161. Correa CE, Betancourt S, Vázquez A, Gañan P (2015) Wear resistance and friction behavior of thermoset matrix reinforced with Musaceae fiber bundles. Tribol Int 87:57–64

    Article  CAS  Google Scholar 

  162. Correa CE, Betancourt S, Vázquez A, Gañan P (2017) Wear performance of vinyl ester reinforced with Musaceae fiber bundles sliding against different metallic surfaces. Tribol Int 109:447–459

    Article  CAS  Google Scholar 

  163. Ibrahim RA (2015b) Tribological performance of polyester composites reinforced by agricultural wastes. Tribol Int 90:463–466

    Article  CAS  Google Scholar 

  164. Yousif BF, El-Tayeb NSM (2007) The effect of oil palm fibers as reinforcement on tribological performance of polyester composite. Surf Rev Lett 14:1095–1102

    Article  CAS  Google Scholar 

  165. Yousif BF, El-Tayeb NSM (2008) Adhesive wear performance of T-OPRP and UT-OPRP composites. Tribol Lett 32:199–208

    Article  CAS  Google Scholar 

  166. Yousif BF, El-Tayeb NSM (2010) Wet adhesive wear characteristics of untreated oil palm fibre-reinforced polyester and treated oil palm fibre-reinforced polyester composites using the pin-on-disc and block-on-ring techniques. Proc Inst Mech Eng, Part J: J Eng Tribol 224:123–131

    Article  Google Scholar 

  167. Yousif BF, Nirmal U (2011) Wear and frictional performance of polymeric composites aged in various solutions. Wear 272:97–104

    Article  CAS  Google Scholar 

  168. Valášek P, Ruggiero A, Müller M (2017) Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Composite Part B: Eng 122:79–88

    Article  CAS  Google Scholar 

  169. Singh Gill N, Yousif BF (2009) Wear and frictional performance of betelnut fibre-reinforced polyester composite. Proc Inst Mech Eng, Part J: J Eng Tribol 223:183–194

    Article  CAS  Google Scholar 

  170. Yousif BF, Devadas A, Yusaf TF (2009) Adhesive wear and frictional behavior of multilayered polyester composite based on betelnut fiber mats under wet contact conditions. Surf Rev Lett 16:407–414

    Article  CAS  Google Scholar 

  171. Yousif BF, Lau ST, McWilliam S (2010) Polyester composite based on betelnut fibre for tribological applications. Tribol Int 43(1–2):503–511

    Article  CAS  Google Scholar 

  172. Nirmal U, Yousif BF, Rilling D, Brevern PV (2010) Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear 268:1354–1370

    Article  CAS  Google Scholar 

  173. Danaelan D, Yousif BF (2008) Adhesive wear performance of CFRP multilayered polyester composites under dry/wet contact conditions. Surf Rev Lett 15:919–925

    Article  CAS  Google Scholar 

  174. Yousif BF (2009) Frictional and wear performance of polyester composites based on coir fibres. Proc Inst Mech Eng, Part J: J Eng Tribol 223:51–59

    Article  CAS  Google Scholar 

  175. Yousif B, Leong OB, Ong LK, Jye WK (2009) The effect of treatment on tribo-performance of CFRP composites. Recent Pat Mater Sci 2:67–74

    Article  CAS  Google Scholar 

  176. Paul R, Bhowmik S (2019) Effect of load on wear performance of coir particulate reinforced epoxy composite. In AIP Conf Proc 2200:020099

    Article  CAS  Google Scholar 

  177. Boopathi L, Sampath PS, Mylsamy K (2012) Influence of fiber length in the wear behaviour of borassus fruit fiber reinforced epoxy composites. Int J Eng Sci Technol 4:4119–4129

    Google Scholar 

  178. Babu GD, Babu KS, Kishore PN (2014) Tensile and wear behavior of calotropis gigentea fruit fiber reinforced polyester composites. Procedia Eng 97:531–535

    Article  CAS  Google Scholar 

  179. Nirmal U, Hashim J, Low KO (2012) Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int 47:122–133

    Article  CAS  Google Scholar 

  180. Aigbodion VS, Hassan SB, Agunsoye JO (2012) Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Mater Des 33:322–327

    Article  CAS  Google Scholar 

  181. Raghavendra G, Acharya SK, Deo CR, Mishra P (2012) Fabrication-modelling and analysis on tribological performance of natural composites using taguchi approach. Procedia Eng 38:2635–2644

    Article  CAS  Google Scholar 

  182. Sathish kumar P, Ramadoss R, (2017) Investigation of mechanical properties and tribological behaviour of bagasse fiber reinforced polymer composite. Int J MC Square Sci Res 9:87–96

  183. Zhang HJ, Zhang ZZ, Guo F, Liu WM (2009) The influence of plasma treatment on the tribological properties of hybrid PTFE/cotton fabric/phenolic composites. Polym Compos 30:1523–1531

    Article  CAS  Google Scholar 

  184. Parikh HH, Gohil PP (2017) Experimental investigation and prediction of wear behavior of cotton fiber polyester composites. Frict 5:183–193

    Article  CAS  Google Scholar 

  185. Majhi S, Samantarai SP, Acharya SK (2012) Tribological behavior of modified rice husk filled epoxy composite. Int J Sci Eng Res 3:1–6

    Google Scholar 

  186. Aurrekoetxea J, Sarrionandia M, Gómez X (2008) Effects of microstructure on wear behaviour of wood reinforced polypropylene composite. Wear 265:606–611

    Article  CAS  Google Scholar 

  187. Cao S, Liu H, Ge S, Wu G (2011) Mechanical and tribological behaviors of UHMWPE composites filled with basalt fibers. J Reinf Plast Compos 30:347–355

    Article  CAS  Google Scholar 

  188. Mahanta S, Samanta S, Chandrasekaran M (2017) Processing and investigation of Tribological properties of basalt epoxy composites. Mater Today: Proc 4:8185–8191

    CAS  Google Scholar 

  189. Syed MA, Syed AA (2012) Development of a new inexpensive green thermoplastic composite and evaluation of its physico-mechanical and wear properties. Mater Des 36:421–427

    Article  CAS  Google Scholar 

  190. Karthick R, Sirisha P, Sankar MR (2014) Mechanical and tribological properties of PMMA-Sea shell based biocomposite for dental application. Procedia Mater Sci 6:1989–2000

    Article  CAS  Google Scholar 

  191. Ma Y, Liu Y, Shang W, Gao Z, Wang H, Guo L, Tong J (2014) Tribological and mechanical properties of pine needle fiber reinforced friction composites under dry sliding conditions. RSC Adv 4:36777–36783

    Article  CAS  Google Scholar 

  192. Basumatary KK (2013) Investigation into mechanical and tribological properties of ipomoea carnea reinforced epoxy composite Ph.D. Thesis. Rourkela (India): NIT Rourkela

  193. Biswal S, Satapathy A (2016) Dry sliding wear behavior of epoxy composite reinforced with short Palmyra fibers. In IOP Conf Ser: Mater Sci Eng 115:012028

    Article  Google Scholar 

  194. Kumar S, Gangil B, Patel VK (2016) Physico-mechanical and tribological properties of Grewia Optiva fiber/bio-particulates hybrid polymer composites. In AIP Conf Proc 1728:020384

    Article  Google Scholar 

  195. Kumar D, Rajendra Boopathy S, Sangeetha D (2016) Investigation on Tribological properties of horn fibre reinforced epoxy composites. Int J Mech Mechatronics Eng IJMME-IJENS 16:79–87

    CAS  Google Scholar 

  196. Pokhriyal M, Prasad L, Raturi HP (2017) An experimental investigation on mechanical and tribological properties of Himalayan nettle fiber composite. J Nat Fibers 15:752–761

    Article  CAS  Google Scholar 

  197. Rashid B, Leman Z, Jawaid M, Ghazali MJ, Ishak MR, Abdelgnei MA (2017) Dry sliding wear behavior of untreated and treated sugar palm fiber filled phenolic composites using factorial technique. Wear 380:26–35

    Article  CAS  Google Scholar 

  198. GT M, Shenoy BS, Kini MV, NH P (2018) Wear behaviour studies on Grewia Serrulata bast fibre reinforced polymer composites. Cogent Eng 5:1517580

  199. Rajeshkumar G, (2020) A new study on tribological performance of phoenix Sp. fiber-reinforced epoxy composites. J Nat Fibers 1–12

Download references

Funding

This research has not received any particular contribution from any funding organization in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Ethics declarations

Declaration of Conflicting Interests

The author(s) confirmed no possible conflicts of interest concerning for the investigation, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, R., Gouda, K. & Bhowmik, S. Effect of Different Constraint on Tribological Behaviour of Natural Fibre/Filler Reinforced Polymeric Composites: a Review. Silicon 13, 2785–2807 (2021). https://doi.org/10.1007/s12633-020-00613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00613-z

Keywords

Navigation