Skip to main content

Advertisement

Log in

Fabrication and Characterization of Acrylonitrile Butadiene Rubber and Stitched E-Glass Fibre Tailored Nano-Silica Epoxy Resin Composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research, the role of acrylonitrile butadiene rubber (ABR) and nano-silica along with stitched E-glass fibre in epoxy composite was investigated. The main objective of this present study is how the additions of ABR and nano-silica particle influences in the mechanical, drop load impact and fracture toughness properties of glass-epoxy composite. The layering of rubber sheet for improving the reinforcing effect is a novel approach in reinforced plastic. The composites were prepared using various stacking sequence of ABR and E-glass fibre with nano-silica toughened epoxy resin. The composites were characterized using ASTM standards. According to mechanical properties the composite designation FAF2 symmetric arrangement gives better overall (rank of 97) properties. Similarly, the composite designation AFA2 gives very higher penetration resistance against the fast moving impactor. The fracture toughness behaviour of the composite shows higher energy release rate of 3.8 MJ/m2 and fracture toughness of 22 MPa for 3 vol.% of nano-silica particle dispersed FAF epoxy composite. The SEM micrographs show improved adhesion of 3 vol.% nano-silica with fibre and ABR in composites. The penetration improved rubber based epoxy composites could be used in armour based device, automobile body parts and domestic product manufacturing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prabhahar MJ, Julyes Jaisingh S, Arun Prakash VR (2019) Role of Magnetite (Fe3O4)-Titania (TiO2) hybrid particle on mechanical, thermal and microwave attenuation behaviour of flexible natural rubber composite in X and Ku band frequencies. Mater.Res.Express 7(2020):016106

    Google Scholar 

  2. Khalaf ESA, Farag H, Abdel-Bary EM (2020) Mechanical and physical characterizations of styrene butadiene rubber: bagasse composites. J Rubber Res 23:23–31. https://doi.org/10.1007/s42464-019-00032-9

    Article  CAS  Google Scholar 

  3. Merizgui T, Hadjajdj A, Kious M, Prakash VRA, Gaoui B (2018) Effect of magnetic iron(III) oxide particle addition with MWCNTs in Kenaf fibre-reinforced epoxy composite shielding material in ‘E’, ‘F’, ‘I’ and ‘J’ band microwave frequencies. Materials research express. https://doi.org/10.1088/20531591/11f9de

  4. Jeevakumari SA, Indhumathi K, Arun Prakash VR (2020) Role of cobalt nanowire and graphene nanoplatelet on microwave shielding behavior of natural rubber composite in high frequency bands. Polym Compos:1–10. https://doi.org/10.1002/pc.25718

  5. Ben Samuel J, Julyes Jaisingh S, Sivakumar K, Mayakannan AV, Arunprakash VR (2020) Visco-elastic, thermal, Antimicrobial and Dielectric Behaviour of Areca Fibre-Reinforced Nano-silica and Neem Oil-Toughened Epoxy Resin Bio Composite Silicon. https://doi.org/10.1007/s12633-020-00569-0

  6. Wang F, Drzal LT, Qin Y, Huang Z (2016) Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nano platelets. Composites: Part A 87:10–22

    Article  CAS  Google Scholar 

  7. Varghese AJ, Ronald BA (2020) Low velocity impact, Fatigue and Visco-elastic Behaviour of Carbon/E-glass Intra-ply fibre-Reinforced Nano-silica Toughened Epoxy Composite Silicon. https://doi.org/10.1007/s12633-020-00566-3

  8. Arunprakash VR, Jaisingh J (2018) Mechanical strength behaviour of silane treated E-glass fibre/Al6061 & SS-304 wire mesh-reinforced epoxy resin hybrid composite. Silicon 10:2279–2286

    Article  Google Scholar 

  9. Dinesh T, Kadirvel A, Hariharan P (2020) Thermo-mechanical and Wear behaviour of surface-treated pineapple woven fibre and Nano-silica dispersed Mahua oil toughened epoxy composite. Silicon. https://doi.org/10.1007/s12633-020-00387-4

  10. Gokul Dass R, Ramesh R (2019) Thermo-mechanical and Wear behaviour of surface-treated pineapple woven fibre and Nano-silica dispersed Mahua oil toughened epoxy composite. Materials research express 6:055302

    Article  CAS  Google Scholar 

  11. Murugan MA, Jayaseelan V, Jayabalakrishnan D, Maridurai T, Kumar SS, Ramesh G, Prakash VRA (2019) Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and Silane-treated Aloevera/hemp/FlaxReinforced SiC whisker modified epoxy resin composites. Silicon 12:1847–1856. https://doi.org/10.1007/s12633-019-00297-0

    Article  CAS  Google Scholar 

  12. Sriramamurthy LK, Hunasikatti S, Kumar N et al (2019) Effect of E-waste rubber on mechanical behavior of glass fibre reinforced with epoxy composites. AIP conference proceedings 2080:020003

    Article  Google Scholar 

  13. Ozdemir NG, Zhang T, Aspin I, Scarpa F, Hadavinia H, Song Y (2016) Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications. Express Polym Lett 10(5):394–407. https://doi.org/10.3144/expresspolymlett.2016.37

    Article  CAS  Google Scholar 

  14. Parthipan N, Illankumaran M, Maridurai T and Prasanna SC (2019) Effect of Silane treated silicon (IV) oxide nanoparticle addition on mechanical, Impact Damage and Drilling Characteristics of Kenaf Fibre-Reinforced Epoxy Composite Silicon, DOI: https://doi.org/10.1007/s12633-019-00138-0

  15. Thendral Thiyagu T, Rajeswari N (2019) Effect of nanosilica and neem tree oil on antimicrobial, thermal, mechanical and electrical insulate of biodegradable composite film. Materials research express 6:095410

    Article  Google Scholar 

  16. Vincent VA, Kailasanathan C, Shanmuganathan VK, Kumar JVSP, Arun Prakash VR (2020) Strength characterization of caryota urens fibre and aluminium 2024-T3 foil multi-stacking sequenced SiC-toughened epoxy structural composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00831-w

  17. Prakash VRA, Jayaseelan V, Mothilal T et al (2019) Effect of Silicon Coupling Grafted Ferric Oxide and E-Glass Fibre in Thermal Stability, Wear and Tensile Fatigue Behaviour of Epoxy Hybrid Composite. Silicon. https://doi.org/10.1007/s12633-019-00347-7

  18. Arun Prakash VR, Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fibre/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384(16):99–106

    Google Scholar 

  19. Arunprakash VR, Viswanathan R (2019) Fabrication and characterization of Echinoidea spike particles and Kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Composites: A 118:317–326

    Article  CAS  Google Scholar 

  20. Karunagaran N, Rajadurai A (2016) Effect of surface treatment on mechanical properties of glass fibre/stainless steel wire mesh reinforced epoxy hybrid composites. J Mech Sci Technol 30:2475e82

    Article  Google Scholar 

  21. Potts JR, Shankar O, Murali S, Ling D, Ruoff RS (2013) Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol 74:166–172

    Article  CAS  Google Scholar 

  22. Jaya Vinse Ruban Y, Ginil Mon S, Vetha Roy D (2013) Mechanical and thermal studies of unsaturated polyester-toughened epoxy composites filled with amine-functionalized nanosilica. Appl Nanosci 3:7–12. https://doi.org/10.1007/s13204-012-0068-x

    Article  CAS  Google Scholar 

  23. Dinesh T, Kadirvel A, Vincent A (2018) Effect of Silane modified Eglass fibre/iron(III)oxide reinforcements on UP blended epoxy resin hybrid composite. Silicon 11:2487–2498. https://doi.org/10.1007/s12633-018-9886-0

    Article  CAS  Google Scholar 

  24. Kim D, Chung I, Kim G (2013) Study on mechanical and thermal properties of fiber-reinforced epoxy/hybrid-silica composite. Fibers Polym 14:2141–2147. https://doi.org/10.1007/s12221-013-2141-9

    Article  CAS  Google Scholar 

  25. Marliana MM, Hassan A, Yuziah MYN, Khalil HPSA, Inuwa IM, Syakir MI, Haafiz MKM (2016) Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite. Fibers Polym 17:902–909. https://doi.org/10.1007/s12221-016-5888-y

    Article  CAS  Google Scholar 

  26. Huzaifah MRM, Sapuan SM, Leman Z, Ishak MR (2019) Effect of fibre loading on the physical, Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Vinyl Ester Composites. Fibers Polym 20:1077–1084. https://doi.org/10.1007/s12221-019-1040-0

    Article  CAS  Google Scholar 

  27. Sudha GS, Kalita H, Mohanty S, Nayak SK (2017) Biobased epoxy blends from epoxidized castor oil: effect on mechanical, thermal, and morphological properties. Macromol Res 25:420–430. https://doi.org/10.1007/s13233-017-5063-3

    Article  CAS  Google Scholar 

  28. Liu W, Ma S, Wang Z, Hu C, Tang C (2010) Morphologies and mechanical and thermal properties of highly epoxidized polysiloxane toughened epoxy resin composites. Macromol Res 18:853–861. https://doi.org/10.1007/s13233-010-0912-3

    Article  CAS  Google Scholar 

  29. Rahman M, Puneeth M, Aslam DA (2017) Impact properties of glass/Kevlar reinforced with nano clay epoxy composite. Composite part B: Engineering 107:50–61

    Google Scholar 

  30. Landowski MS (2017) Impact damage in SiO2 nanoparticles enhanced epoxy carbon fibre composites. Composites part B Engineering 113:91–99

    Article  CAS  Google Scholar 

  31. Ravandi MT, Tran L (2017) Low velocity impact performance of stitched flax/epoxy composite. Composite part B: Engineering 117:120–121

    Article  Google Scholar 

  32. Maillet I, Michel L, Rico G, Fressinet M, Gourinat Y (2013) A new test methodology based on structural resonance for mode I fatigue delamination growth in a unidirectional composite. Compos Struct 97:353–362

    Article  Google Scholar 

  33. Zewde B, Pitliya P, Raghavan D (2016) The role of surface modified TiO2 nanoparticles on the mechanical and thermal properties of CTBN toughened epoxy nanocomposite. J Mater Sci 51:9314–9329. https://doi.org/10.1007/s10853-016-0179-y

    Article  CAS  Google Scholar 

  34. Sobrinho L.L, Calado V.M.A, Bastian F.L (2011). Effects of rubber addition to an epoxy resin and its Fiber glass-reinforced composite.Polym Compos vol. 33, no.2, pp.295–305. https://doi.org/10.1002/pc.21265

  35. Hua Y, Linxia G, Premaraj S, Zhang X (2015) Role of interface in the mechanical behaviour of silica/epoxy resin nanocomposites. Materials. 8(6):3519–3531. https://doi.org/10.3390/ma8063519

    Article  CAS  PubMed Central  Google Scholar 

  36. Tsai JL, Huang BH, Cheng YL (2011) Enhancing fracture toughness of glass/epoxy composites for wind blades using silica nanoparticles and rubber particles. Procedia Engineering 14:1982–1987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jayabalakrishnan.

Ethics declarations

Conflict of Interest

All authors hereby confirmed that this article does not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayabalakrishnan, D., Saravanan, K., Ravi, S. et al. Fabrication and Characterization of Acrylonitrile Butadiene Rubber and Stitched E-Glass Fibre Tailored Nano-Silica Epoxy Resin Composite. Silicon 13, 2509–2517 (2021). https://doi.org/10.1007/s12633-020-00612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00612-0

Keywords

Navigation