Skip to main content
Log in

Facile Reduction of Phosphine Oxides by O-Silylated Hydrazide Supported Hydrosilanes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work describes the investigations on a metal-free reduction of pentavalent tetracoordinate phosphine oxides to the corresponding trivalent phosphines using inexpensive hydrosilanes (Ph3SiH, Ph2SiH2, Et2SiH2, and Cl2SiMeH) in the presence of various activators including O-silylated hydrazide derivative. The presence of hydrazide precursor with CH3SiHCl2 leading to a hypercoordinate silicon(IV) complex has proved more effective in the reduction of phosphine oxides. Various phosphine oxides with substituents like alkyl, aryl, or N-alkyl on central phosphorus atom were reduced with notable features of chemoselectivity in the presence of other active reducible groups. They exhibited good to excellent yields under the safe reaction conditions. A generalized reduction mechanism has been proposed involving the formation of hypercoordinate silicon(IV) species as the key intermediates. According to the DFT calculations, the reactivity of silanes as reducing agents is influenced by the oxophilic/electrophilic nature of silicon atom present therein. On comparison, the order of reactivity calculated on the basis of NPA charge distribution appears as: pentacoordinate silicon(IV) complex > Ph3SiH > Cl2SiMeH > Ph2SiH2 ~ Et2SiH2 > PhSiH3 > SiH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Longwitz L, Werner T (2019) Recent advances in catalytic Wittig-type reactions based on P(III)/P(V) redox cycling. Pure Appl Chem 91:95–102

    Article  CAS  Google Scholar 

  2. Quin LD (2000) A guide to organophosphorus chemistry. John Wiley & Sons, New York

    Google Scholar 

  3. Appel R (1975) Tertiary Phosphane/Tetrachloromethane, a versatile reagent for chlorination, dehydration, and P-N linkage. Angew Chem Int Ed Engl 14:801

    Article  Google Scholar 

  4. Denton RM, An J, Adeniran B (2010) Phosphine oxide-catalysed chlorination reactions of alcohols under Appel conditions. Chem Commun 46:3025–3027

    Article  CAS  Google Scholar 

  5. Wittig G (1980) From Diyls to Ylides to my idyll, science (Washington, D.C.) 210: 600-604

  6. Li Q, Shah Z, Qu J, Kang Y (2018) Direct Wittig Olefination of alcohols. J Org Chem 83:296–302

    Article  CAS  PubMed  Google Scholar 

  7. Mitsunobu O (1981) The use of diethyl Azodicarboxylate and Triphenylphosphine in synthesis and transformation of natural products. Synthesis:1–28

  8. Beddoe RH, Sneddon HF, Denton RM (2018) The catalytic Mitsunobu reaction: a critical analysis of the current state-of-the-art. Org Biomol Chem 16:7774–7781

    Article  CAS  PubMed  Google Scholar 

  9. Jin H, Zhang Q, Li E, Jia P, Li N, Huang Y (2017) Phosphine-catalyzed intramolecular Rauhut–currier reaction: enantioselective synthesis of hydro-2 H-indole derivatives. Org Biomol Chem 15:7097–7101

    Article  CAS  PubMed  Google Scholar 

  10. Xie, P, Huang Y (2013) Domino Cyclization Initiated by Cross‐Rauhut–Currier Reactions Eur J Org Chem 6213

  11. Jacobsen EN, Pfaltz A, Yamamoto H (1999) Comprehensive asymmetric catalysis. Springer-Verlag GmbH, Berlin

    Google Scholar 

  12. Ojima I (2000) Catalytic asymmetric synthesis. Wiley-VCH, New York

    Book  Google Scholar 

  13. Diederich F, Stang PJ (1997) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim

    Google Scholar 

  14. Tsuji J (2004) Palladium reagents and catalysts. Wiley & Sons, Chichester

    Book  Google Scholar 

  15. Beller M, Bolm C (2004) Transition metals for organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. Börner A (2008) Phosphorus ligands in asymmetric catalysis−synthesis and application. Wiley-VCH, Weinheim

  17. Tang W, Zhang X (2003) New chiral phosphorus ligands for Enantioselective hydrogenation. Chem Rev 103:3029–3070

    Article  CAS  PubMed  Google Scholar 

  18. K. V. L. Crepy, T. Imamoto (2003) New P-chirogenic phosphine ligands and their use in catalytic asymmetric reactions. Top Curr Chem 229 (New Aspects in Phosphorus Chemistry III): 1–40

  19. Ye L, Zhou J, Tang Y (2008) Phosphine-triggered synthesis of functionalized cyclic compounds. Chem Soc Rev 37:1140–1152

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien CJ, Tellez JL, Nixon ZS, Kang, Carter AL, Kunkel SR, Przeworski KC, Chass GA (2009) Recycling the waste: the development of a catalytic wittig reaction. Angew Chem Int Ed 48:6836–6839

    Article  CAS  Google Scholar 

  21. Zapf A, Ehrentraut A, Beller M (2000) A new highly efficient catalyst system for the coupling of nonactivated and deactivated aryl chlorides with Arylboronic acids. Angew Chem Int Ed 39:4153–4155

    Article  CAS  Google Scholar 

  22. Honaker MT, Sandefur BJ, Hargett JL, McDaniel AL, Salvatore RN (2003) CsOH-promoted P-alkylation: a convenient and highly efficient synthesis of tertiary phosphines. Tetrahedron Lett, 44: 8373–8377

  23. Korff C, Helmchen G (2004) Preparation of chiral triarylphosphines by Pd-catalysed asymmetric P–C cross-coupling. Chem Commun 530–531

  24. Liu D, Gao W, Dai Q, Zhang X (2005) Triazole-Based Monophosphines for Suzuki-Miyaura Coupling and Amination Reactions of Aryl Chlorides. Org Lett 7:4907–4910

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Chi Y, Zhang X (2007) Developing chiral ligands for asymmetric hydrogenation. Acc Chem Res 40:1278–1290

    Article  CAS  PubMed  Google Scholar 

  26. Han Z, Wang S, Zhang X, Ding K (2009) Spiro[4,4]-1,6-nonadiene-based phosphine-oxazoline ligands for iridium-catalyzed enantioselective hydrogenation of ketimines. Angew Chem Int Ed 48:5345–5349

    Article  CAS  Google Scholar 

  27. Dumrath A, Wu XF, Neumann H, Spannenberg A, Jackstell R, Beller M (2010) Recyclable catalysts for palladium-catalyzed C-O coupling reactions, Buchwald-Hartwig aminations, and Sonogashira reactions. Angew Chem Int Ed 49:8988–8992

    Article  CAS  Google Scholar 

  28. Liu Z, Du H (2010) Development of chiral terminal-alkene−phosphine hybrid ligands for palladium-catalyzed asymmetric Allylic substitutions. Org Lett 12:3054–3057

    Article  CAS  PubMed  Google Scholar 

  29. Morikawa S, Michigami K, Amii H (2010) Novel axially chiral phosphine ligand with a Fluoro alcohol moiety for Rh-catalyzed asymmetric Arylation of aromatic aldehydes. Org Lett 12:2520–2523

    Article  CAS  PubMed  Google Scholar 

  30. de la Fuente V, Waugh M, Eastham GR, Castillón S, Claver C (2010) Phosphine ligands in the palladium‐catalysed Methoxycarbonylation of Ethene: insights into the catalytic cycle through an HP NMR spectroscopic study. Chem Eur J 16: 6919–6932

  31. Wang X, Han Z, Wang Z, Ding K (2011) Catalytic asymmetric synthesis of aromatic spiroketals by SpinPhox/Iridium(I)‐Catalyzed hydrogenation and spiroketalization of α,α′‐Bis(2‐hydroxyarylidene) Ketones. Angew Chem Int Ed 51: 936–940

  32. Feng J, Chen X, Shi M, Duan W (2010) Palladium-catalyzed asymmetric addition of Diarylphosphines to Enones toward the synthesis of chiral Phosphines. J Am Chem Soc 132:5562–5563

    Article  CAS  PubMed  Google Scholar 

  33. Huang Y, Chew RJ, Li Y, Pullarkat SA, Leung P (2011) Direct synthesis of chiral tertiary diphosphines via Pd(II)-catalyzed asymmetric hydrophosphination of dienones. Org Lett 13:5862–5865

    Article  CAS  PubMed  Google Scholar 

  34. Fang Y, Li C (2007) Preference of 4-exo ring closure in copper-catalyzed Intramolecular coupling of vinyl bromides with alcohols. J Am Chem Soc 129:8092–8093

    Article  CAS  PubMed  Google Scholar 

  35. Altman RA, Shafir A, Choi A, Lichtor PA, Buchwald SL (2008) An improved cu-based catalyst system for the reactions of alcohols with aryl halides. J Org Chem 73:284–286

    Article  CAS  PubMed  Google Scholar 

  36. Jiao J, Zhang X, Chang N, Wang J, Wei J, Shi X, Chen Z (2011) A facile and practical copper powder-catalyzed, organic solvent- and ligand-free Ullmann Amination of aryl halides. J Org Chem 76:1180–1183

    Article  CAS  PubMed  Google Scholar 

  37. Tani K, Behenna DC, McFadden RM, Stoltz BM (2007) A facile and modular synthesis of Phosphinooxazoline ligands. Org Lett 9:2529–2531

    Article  CAS  PubMed  Google Scholar 

  38. Guo H, Fan YC, Sun Z, Wu Y, Kwon O (2018) Phosphine Organocatalysis. Chem Rev 118:10049–10293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Podyacheva E, Kuchuk E, Chusov D (2019) Reduction of phosphine oxides to phosphines. Tetrahedr Lett 60:575–582

    Article  CAS  Google Scholar 

  40. Li P, Wischert R, Métivier P (2017) Mild reduction of phosphine oxides with Phosphites to access Phosphines. Angew Chemie Int Ed 129:16205–16208

    Article  Google Scholar 

  41. Stepen AJ, Bursch M, Grimme S, Stephan DW, Paradies J (2018) Electrophilic Phosphonium Cation-mediated Phosphane oxide reduction using Oxalyl chloride and hydrogen. Angew Chem Int Ed 57:15253–15256

    Article  CAS  Google Scholar 

  42. Kirk AM, O’Brien CJ, Krenske EH (2020) Why do silanes reduce electron-rich phosphine oxides faster than electron-poor phosphine oxides? Chem Commun 56:1227–1230

    Article  CAS  Google Scholar 

  43. Chardon A, Maubert O, Rouden J, Blanchet J (2017) Metal‐free reduction of phosphine oxides, Sulfoxides, and N‐oxides with Hydrosilanes using a Borinic acid Precatalyst. ChemCatChem 9:4460–4464

    Article  CAS  Google Scholar 

  44. Rinehart NI, Kendall AJ, Tyler DR (2018) A universally applicable methodology for the gram-scale synthesis of primary, secondary, and tertiary Phosphines. Organometallics 37:182–190

    Article  CAS  Google Scholar 

  45. Fianchini M, O’Brien CJ, Chass GA (2019) Reduction rate of 1-phenyl Phospholane 1-oxide enhanced by Silanol byproducts: comprehensive DFT study and kinetic modeling linked to reagent design. J Org Chem 84:10579–10592

    Article  CAS  PubMed  Google Scholar 

  46. Sowa S, Stankevic ˇ M, Flis A, Pietrusiewicz KM (2018) Reduction of tertiary phosphine oxides by BH3 assisted by neighboring­ activating groups. Synthesis 50: 2106–2118

  47. Provis-Evans CB, Emanuelsson EAC, Webster RL (2018) Rapid metal‐free formation of free Phosphines from phosphine oxides. Adv Synth Catal 360:3999–4004

    Article  CAS  Google Scholar 

  48. Chrzanowski J, Krasowska D, Urbaniak M, Sieron L, Pokora-Sobczak P, Demchuk OM, Drabowicz J (2018) Synthesis of Enantioenriched aryl‐tert‐Butylphenylphosphine oxides via cross‐coupling reactions of tert‐Butylphenylphosphine oxide with aryl halides. Eur J Org Chem 2018:4614–4627

    Article  CAS  Google Scholar 

  49. Kovács T, Keglevich G (2016) The deoxygenation of phosphine oxides under green chemical conditions. Phosphorus. Sulfur Silicon Relat Elem 19:359–366

    Article  CAS  Google Scholar 

  50. Kovács T, Urbanics A, Csatlós F, Binder J, Falk A, Uhlig F, Keglevich G (2016) A study on the deoxygenation of phosphine oxides by different silane derivatives. Curr Org Synth 13:148–153

    Article  CAS  Google Scholar 

  51. Kovács T, Urbanics A, Csatlós F, Keglevich G (2017) A study on the deoxygenation of trialkyl-, dialkyl-phenyl- and alkyl-diphenyl phosphine oxides by hydrosilanes. Heteroat Chem 28:21376

    Article  CAS  Google Scholar 

  52. Naumann K, Zon G, Mislow K (1969) Use of hexachlorodisilane as a reducing agent. Stereospecific deoxygenation of acyclic phosphine oxides J Am Chem Soc 91:7012–7023

    CAS  Google Scholar 

  53. Buonomo JA, Eiden CG, Aldrich CC (2017) Chemoselective reduction of phosphine oxides by 1,3‐Diphenyl‐Disiloxane. Chem – A Eur J 23:14434–14438

    Article  CAS  Google Scholar 

  54. Gevorgyan A, Mkrtchyan S, Grigoryan T, Iaroshenko VO (2017) Disilanes as oxygen scavengers and surrogates of hydrosilanes suitable for selective reduction of nitroarenes, phosphine oxides and other valuable substrates. Org Chem Front 4:2437–2444

    Article  CAS  Google Scholar 

  55. Krachko T, Lyaskovskyy V, Lutz M, Lammertsma K, Slootweg JC (2017) Brønsted acid promoted reduction of tertiary phosphine oxides. Zeitschrift für Anorg und Allg Chemie 643:916–921

    Article  CAS  Google Scholar 

  56. Anastas PT, Zimmerman JB (2003) Peer reviewed: design through the 12 principles of green engineering. Environ Sci Technol 37:95–101

    Google Scholar 

  57. Zhang JQ, Ye J, Huang T, Shinohara H, Fujino H, Han LB (2020) Conversion of triphenylphosphine oxide to organophosphorus via selective cleavage of C-P, O-P, and C-H bonds with sodium. Nature Chemistry (in press). https://doi.org/10.1038/s42004-019-0249-6

  58. Imamoto T, Kikuchi SI, Miura T, Wada Y (2001) Stereospecific reduction of phosphine oxides to Phosphines by the use of a methylation reagent and Lithium aluminum hydride. Org Lett 3:87–90

    Article  CAS  PubMed  Google Scholar 

  59. T. Imamoto, T. Takeyama, T. Kusumoto, (1985) Facile reduction of organic halides and phosphine oxides with LiAlH4-CeCl3. Chem Lett 1491

  60. Bootle-Wilbraham A, Head S, Longstaff J, Wyatt P (1999) Alane - a chemoselective way to reduce phosphine oxides. Tetrahedron Lett 40:5267–5270

    Article  CAS  Google Scholar 

  61. Busacca CA, Raju R, Grinberg N, Haddad N, James-Jones P, Lee H, Lorenz JC, Saha A, Senanayake CH (2008) Reduction of tertiary phosphine oxides with DIBAL-H. J Org Chem 73:1524–1531

    Article  CAS  PubMed  Google Scholar 

  62. Rajendran KV, Gilheany DG (2012) Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride. Chem Commun 48:817–819

    Article  CAS  Google Scholar 

  63. Fritzsche H, Hasserodt U, Korte F, Friese G, Adrian K, Arenz HJ (1964). Chem Ber 97:1988

    Article  CAS  Google Scholar 

  64. Horner L, Balzer WD (1965) Phosphororganische verbindungen IXL zum sterischen verlauf der desoxygenierung von tertiären phosphinoxyden zu tertiären phosphinen mit trichlorsilan. Tetrahedron Lett 6:1157–1162

    Article  Google Scholar 

  65. Naumann K, Zon G, Mislow K (1969) Use of hexachlorodisilane as a reducing agent. Stereospecific deoxygenation of acyclic phosphine oxides. J Am Chem Soc 91:2788

    Article  CAS  Google Scholar 

  66. Krenske EH (2012) Reductions of phosphine oxides and sulfides by Perchlorosilanes: evidence for the involvement of donor-stabilized Dichlorosilylene. J Org Chem 77:1–4

    Article  CAS  PubMed  Google Scholar 

  67. Allen DW, Tebby JC Organophosphorus chemistry series, Royal Society of Chemistry Cambridge: Cambridge, U. K, pp 1970−2012

  68. Hérault D, Nguyen DH, Nuel D, Buono Z (2015) Reduction of secondary and tertiary phosphine oxides to phosphines. Chem Soc Rev 44:2508–2528

    Article  PubMed  Google Scholar 

  69. Keglevich G, Kovács T, Csatlós F (2015) The Deoxygenation of phosphine oxides under green chemical conditions. Heteroat Chem 26:199–205

    Article  CAS  Google Scholar 

  70. Goud EV, Pavankumar BB, Shruthi Y, Paul A, Sivaramakrishna A, Vijayakrishna K, Rao CVSB, Sabharwal KN, Clayton HS (2013) Investigations on synthesis, thermolysis, and coordination chemistry of aminophosphine oxides. J Coord Chem 66:2647–2658

    Article  CAS  Google Scholar 

  71. Pavankumar BB, Goud EV, Selvakumar R, Ashok Kumar SK, Sivaramakrishna A, Vijayakrishna K, Rao CVSB, Sabharwal KN, Jha PC (2015) Function of substituents in coordination behaviour, thermolysis and ligand crossover reactions of phosphine oxides. RSC Adv 5:4727

    Article  CAS  Google Scholar 

  72. Das D, Goud EV, Annam S, Jayalakshmi S, Gopakumar G, Rao CVSB, Sivaraman N, Sivaramakrishna A, Vijayakrishna K (2015) Experimental and theoretical studies on extraction behavior of di-n-alkyl phosphine oxides towards actinides. RSC Adv 5:107421–107429

    Article  CAS  Google Scholar 

  73. Gauss J (1995) Accurate calculation of NMR chemical shifts. Ber Bunsenges Phys Chem 99:1001–1008

    Article  CAS  Google Scholar 

  74. Maryasin B, Zipse H (2011) Theoretical studies of 31P NMR spectral properties of phosphanes and related compounds in solution. Phys Chem Chem Phys 13:5150–5158

    Article  CAS  PubMed  Google Scholar 

  75. Sebastin S, Sundaraganesan N (2010) The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. Spectrochim Acta A 75:941–952

    Article  CAS  Google Scholar 

  76. Schraml J, Capka M, Blechta V (1992) 31P and 13C NMR spectra of cyclohexylphenylphosphines, tricyclohexylphosphine and triphenylphosphine. Magn Reson Chem 30:544–547

    Article  CAS  Google Scholar 

  77. Chou WN, Pomerantz M (1991) N-phenyl-P,P,P-triarylphospha-.lambda.5-azenes, triarylphosphines, and triarylphosphine oxides. Substituent effects on nitrogen-15, phosphorus-31, and carbon-13 NMR spectra. J Org Chem 56: 2762–2769

  78. McKillop KL, Gillette GR, Powell DR, West R (1992) 1,2-Disiladioxetanes: structure, rearrangement and reactivity. J Am Chem Soc 114:5203–5208

    Article  CAS  Google Scholar 

  79. Snehalatha M, Ravikumar C, Hubert Joe I, Sekar N, Jayakumar VS (2009) Spectroscopic analysis and DFT calculations of a food additive carmoisine. Spectrochim Acta 72:654–662

    Article  CAS  Google Scholar 

  80. Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dasgupta N, Ramalingam C, Swamiappan S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(iv) precursors. RSC Adv 6:66394–66406

    Article  CAS  Google Scholar 

  81. Suman P, Janardan S, Lone MY, Jha PC, Vijayakrishna K, Sivaramakrishna A (2015) Role of N-donor groups on the stability of hydrazide based hypercoordinate silicon(IV) complexes: theoretical and experimental perceptions. Polyhedron 99:266–274

    Article  CAS  Google Scholar 

  82. Sivaramakrishna A, Kalikhman I, Kertsnus E, Korlyukov AA, Kost D (2006) Donor-stabilized Silyl Cations. 10. Pentacoordinate Siliconium-ion salts with a Triphenylphosphinimino-N ligand group: two-bond P−N−Si coupling as a measure for coordination strength. Organometallics 25:3665–3669

    Article  CAS  Google Scholar 

  83. Gostevskii B, Silbert G, Adear K, Sivaramakrishna A, Stalke D, Deuerlein S, Kocher N, Voronkov MG, Kalikhman I, Kost D (2005) Donor-stabilized Silyl Cations. 9. Two dissociation patterns of Hexacoordinate silicon complexes: a model Nucleophilic substitution at Pentacoordinate silicon. Organometallics 24:2913–2920

    Article  CAS  Google Scholar 

  84. Gostevskii B, Pestunovich V, Kalikhman I, Sivaramakrishna A, Kocher N, Deuerlein S, Leusser D, Stalke D, Kost D (2004) Donor-stabilized Silyl Cations. 8. Carbon−carbon bond formation through a novel Interchelate molecular rearrangement in Pentacoordinate Siliconium-ion salts. Organometallics 23:4346–4348

    Article  CAS  Google Scholar 

  85. Gostevskii B, Adear K, Sivaramakrishna A, Silbert G, Stalke D, Kocher N, Kalikhman I, Kost D (2004) Neutral and ionic dissociation patterns in hexacoordinate silicon chelates: a model nucleophilic substitution at pentacoordinate silicon. Chem Commun 2018:1644–1645

    Article  CAS  Google Scholar 

  86. Kalikhman I, Gostevskii B, Girshberg O, Sivaramakrishna A, Kocher N, Stalke D, Kost D (2003) Donor-stabilized silyl cations: part 7: neutral hexacoordinate and ionic pentacoordinate silicon chelates with N-isopropylideneimino-acylimidato ligands. J Organomet Chem 686:202–214

    Article  CAS  Google Scholar 

  87. Janardan S, Suman P, Sivaramakrishna A, Vijayakrishna K (2015) Donor-stabilized hypercoordinated silicon(IV) chelates with cyclohexylideneimino-N ligand group: role of substituents on ionization. Polyhedron 85:34–40

    Article  CAS  Google Scholar 

  88. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009

  89. Krenske EH (2012) Theoretical investigation of the mechanisms and Stereoselectivities of reductions of acyclic phosphine oxides and sulfides by Chlorosilanes. J Org Chem 77:3969–3977

    Article  CAS  PubMed  Google Scholar 

  90. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  91. Frisch MJ, Trucos GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Peterson GA (2009) Gaussian 09 Revision A02. Gaussian, Wallingford CT

    Google Scholar 

Download references

Acknowledgments

Support for this work from DST-SERB, New Delhi, India (Ref. No. SR/Si/IC-38/2011) and DAE-BRNS (No. 2012/37C/6/BRNS/623) is gratefully acknowledged. Mr. Janardan Sannapaneni thanks DST for the fellowship. ASRK and his group members thank DST-VIT-FIST for NMR and SIF-VIT University for other instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akella Sivaramakrishna.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janardan, S., Anand, A.S.V., Suman, P. et al. Facile Reduction of Phosphine Oxides by O-Silylated Hydrazide Supported Hydrosilanes. Silicon 13, 2881–2893 (2021). https://doi.org/10.1007/s12633-020-00598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00598-9

Keywords

Navigation