Skip to main content
Log in

Effect of Silicon Wafer Resistivity on Morphology and Wettability of Silicon Nanowires Arrays

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Herein, we prepare vertical and single crystalline silicon nanowires (SiNWs) via a one-step metal-assisted chemical etching method in aqueous NH4HF2/AgNO3 solution. The effects of silicon substrate resistivity and concentrations of NH4HF2 and AgNO3 on the etching process were examined. Two properties were studied, the morphology and the wettability of etched layers. The morphology of the silicon nanowire (SiNW) layers was investigated by scanning electron microscopy (SEM) while the wettability was studied by contact angle measurement system. It was established that the morphology is strongly influenced by etching parameters and their wettability changes from superhydrophilic to hydrophobic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science. 294:1313–1317

    CAS  PubMed  Google Scholar 

  2. Ahn Y, Dunning J, Park J (2005) Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett 5:1367–1370

    CAS  PubMed  Google Scholar 

  3. Li QL, Koo SM, Edelstein MD, Suehle JS, Richter CA (2007) Silicon nanowire electromechanical switches for logic device application. Nanotechnology. 18:315202–315206

    Google Scholar 

  4. Koo SM, Li QL, Edelstein MD, Richter CA, Vogel EM (2005) Enhanced channel modulation in dual-gated silicon nanowire transistors. Nano Lett 5:2519–2523

    CAS  PubMed  Google Scholar 

  5. Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4:245–247

    Google Scholar 

  6. Yang K, Wang H, Zou K, Zhang XH (2006) Gold nanoparticle modified silicon nanowires as biosensors. Nanotechnology. 17:S276–S279

    CAS  Google Scholar 

  7. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    CAS  PubMed  Google Scholar 

  8. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293:1289–1292

    CAS  PubMed  Google Scholar 

  9. Peng KQ, Wang X, Lee ST (2009) Gas sensing properties of single crystalline porous silicon nanowires. Appl Phys Lett 95:243112–243114

    Google Scholar 

  10. Chan CK, Peng HL, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    CAS  PubMed  Google Scholar 

  11. Peng KQ, Jie JS, Zhang WJ, Lee ST (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93:033105

    Google Scholar 

  12. Tian BZ, Zheng XL, Kempa TJ, Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature. 449:885–889

    CAS  PubMed  Google Scholar 

  13. Garnett EC, Yang PD, Am J (2008) Silicon nanowire radial p−n junction solar cells. Chem Soc 130:9224–9225

    CAS  Google Scholar 

  14. Peng KQ, Wang X, Lee ST (2008) Silicon nanowire array photoelectrochemical solar cells. Appl Phys Lett 92:163103

    Google Scholar 

  15. Huq SE, Chen L, Prewett PD (1995) Sub10nm silicon field emitters produced by electron beam lithography and isotropic plasma etching. Microelectron Eng 27:95–98

    CAS  Google Scholar 

  16. Kayes BM, Filler MA, Putnam MC, Kelzenberg MD, Lewis NS, Atwater HA (2007) Growth of vertically aligned Si wire arrays over large areas (>1cm2) with Au and Cu catalysts. Appl Phys Lett 91:103110–103113

    Google Scholar 

  17. Xu L, Li W, Xu J, Zhou J, Wu L, Zhang XG, Ma Z, Chen K (2009) Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography. App Surf Sci 255:5414–5417

    CAS  Google Scholar 

  18. Hsu CM, Connor ST, Tang MX, Cui Y (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109–133111

    Google Scholar 

  19. Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    CAS  Google Scholar 

  20. Peng KQ, Fang H, Hu JJ, Wu Y, Zhu J, Yan YJ, Lee S (2006) Metal-Particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem-Eur J 12:7942–7947

    CAS  PubMed  Google Scholar 

  21. Peng KQ, Fang H, Zhang XY, Xu Y, Zhu J (2005) Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chem Int Edn 44:2737–2742

    CAS  Google Scholar 

  22. Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Matter 16:387–394

    CAS  Google Scholar 

  23. Peng KQ, Lu AJ, Zhang RQ, Lee ST (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Matter 18:3026–3035

    CAS  Google Scholar 

  24. Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wang NB, Phys J (2008). Chem C 112:4444–4450

    CAS  Google Scholar 

  25. Peng K, Yan Y (2003) Gao. S, J. Zhu. Adv Funct Mater 13:127–132

    CAS  Google Scholar 

  26. Rahmani M, Andouni S, Zaibi MA, Meftah A (2020) Effect of etching duration on the morphological and opto-electrical properties of silicon nanowires obtained by Ag-assisted chemical etching. Silicon. https://doi.org/10.1007/s12633-020-00416-2

  27. Madhavi K, Ghosh M, Rao GM, Suvarna RP (2020) Surface modification influenced properties of silicon nanowires grown by Ag assisted chemical etching with ECR hydrogen plasma treatment. J Mater Sci-Mater EL 31:1904–1911

    CAS  Google Scholar 

  28. Long W, Li H, Yang B, Huang N, Liu L, Gai Z, Jiang X (2020) Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’. J Mater Sci Technol 48:1–8

    Google Scholar 

  29. Ifires M, Hadjersi T, Chegroune R, Lamrani S, Fatsah M, Mebarki M, Manseri A, Alloys J (2019) One-step electrodeposition of superhydrophobic NiO-Co(OH)2 urchin-like structures on Si nanowires as photocatalyst for RhB degradation under visible light. Compd. 774:908–917

    CAS  Google Scholar 

  30. Brahiti N, Bouanik SA, Hadjersi T (2012) Metal-assisted electroless etching of silicon in aqueous NH4HF2 solution. Appl Surf Sci 258:5628–5637

    CAS  Google Scholar 

  31. Shibuichi S, Onda T, Satoh N, Tsujii K (1996). J Phys Chem 100:19152–19517

    Google Scholar 

  32. Coninck JD, de Ruijter MJ, Voué M (2001). Science. 6:49–53

    Google Scholar 

  33. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2:457–460

    CAS  PubMed  Google Scholar 

  34. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a Simple Plastic into a Superhydrophobic Surface. Science. 299:1377–1380

    CAS  PubMed  Google Scholar 

  35. Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    PubMed  Google Scholar 

  36. Li Z, Meng F, Liu X (2011) Wettability control by DLC coated nanowire topography. Nanotechnology. 22:135302–135309

    PubMed  Google Scholar 

  37. Naama S, Hadjersil T, Nezzal G, Guerbous L (2013). J Nano R 21:109–115

    Google Scholar 

  38. Megouda N, Hadjersi T, Piret G, Boukherroub R, Elkechai O (2013) Electroless chemical etching of silicon in aqueous NH4F/AgNO3/HNO3 solution. Appl Surf Sci 284:894–899

    CAS  Google Scholar 

  39. Feng L, Li S, Jiang L (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    CAS  Google Scholar 

  40. Ren S, Yang S, Zhao Y, Yu T, Xiao X (2003) Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf Sci 546:64–74

    CAS  Google Scholar 

  41. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 202:1–8

    CAS  Google Scholar 

  42. Schmidt DL, Coburn CE, Benjamin MD (1994) Water-based non-stick hydrophobic coatings. Nature. 368:39–41

    CAS  Google Scholar 

  43. Shang H, Wang Y, Limmer LS (2005) Optically transparent superhydrophobic silica-based films. Thin Solid Films 472:37–43

    CAS  Google Scholar 

  44. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir. 12:2125–2127

    CAS  Google Scholar 

  45. Guo Z, Zhou F, Hao J, Liu W (2005) Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc 127:15670–15671

    CAS  PubMed  Google Scholar 

  46. Xu Y, Wu D, Sun YH, Huang ZX, Jiang XD, Wei XF, Wei ZH, Dong BZ, Wu ZH (2005) Superhydrophobic antireflective silica films: fractal surfaces and laser-induced damage thresholds. Appl Opt 44:527–533

    CAS  PubMed  Google Scholar 

  47. Li M, Zhai J, Liu H, Song YL, Jiang L, Zhu DB (2003) Electrochemical deposition of conductive superhydrophobic zinc oxide thin films. J Phys Chem B 107:9954–9957

    CAS  Google Scholar 

  48. Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Naama.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naama, S., Hadjersi, T., Larabi, A. et al. Effect of Silicon Wafer Resistivity on Morphology and Wettability of Silicon Nanowires Arrays. Silicon 13, 893–899 (2021). https://doi.org/10.1007/s12633-020-00511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00511-4

Keywords

Navigation