Skip to main content
Log in

Analysis of D.C Parameters of Short-Channel Heterostructure Double Gate Junction-Less MOSFET Circuits Considering Quantum Mechanical Effects

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, the electrical behavior of short channel SiGe Heterostructure Junction-Less DG-MOSFET have been studied by incorporating the quantum mechanical effect and short channel effects. Analytical model and simulation result shows how the device process parameters like gate oxide thickness, silicon thickness, channel doping concentration, channel or gate length etc. have an impact on the D.C parameters like threshold voltage, surface potential. DIBL and threshold voltage of the nanoscale JL-MOSFET are also analyzed by considering the QME to raise the accuracy of the derived models. Extensive simulations are performed in SILVACO ATLAS TCAD tool to validate the proposed models. It is quite evident that the derived models and simulation results are in good agreement for a wide variation of process parameters. Schrodinger model has been used in ATLAS simulation platform to validate the derived analytical model considering QME. However, comprehensive analysis of the short channel SiGe Hetero-structure Junction-Less Double Gate Metal Oxide Semiconductor Field Effect Transistor gives a better view and understanding of D.C characteristics of the device. At the end, D.C characteristics (power dissipation, propagation delay, power-delay product) of an inverter circuit has been taken under consideration to check the impact of QMEs on circuit performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kundu S, Mohanty SP, Ranganathan N (2013) Design methodologies for nano-electronic digital and analogue circuits. IET Circuits Devices Syst 7(5):221–222

    Article  Google Scholar 

  2. Lee, C.-W., Nazarov, A.N., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., Doria, R.T., Colinge, J.-P. et al. Low subthreshold slope in junctionless multigate transistors. Appl.Phys.Lett.96(10), 102106–1–102106-3 (2010)

  3. Jazaeri F, Barbut L, Koukab A, Sallese J-M et al (Apr.2013) Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime. Solid State Electron 82:103–110

    Article  CAS  Google Scholar 

  4. Dehzangi A, Larki F, Hutagalung SD, Saion EB, Abdullah AM, Hamidon MN, Majlis BY, Kakooei S, Navaseri M, Kharazmi A et al (2012) Numerical investigation and comparison with experimental characterisation of side gate p-type junctionless silicon transistor in pinch-off state. IET Micro and Nano Letters 7(9):981–985

    Article  Google Scholar 

  5. Vadizadeh, Mahdi. et al. “Designing a Hetrostructure Junctionless-Field Effect Transistor (HJL-FET) for High-Speed Applications.” Journal of the Korean Physical Society 71, no. 5 (2017): 275–82. https://doi.org/10.3938/jkps.71.275

  6. Colinge J-P, Alderman JC, Xiong W, Cleavelin CR et al (May 2006) Quantum–mechanical effects in trigate SOI MOSFETs. IEEE Trans Electron Devices 53(5):1131–1136

    Article  CAS  Google Scholar 

  7. Gupta S, Ghosh B, Rahi SB et al (2015) Compact analytical model of double gate junction-less field effect transistor comprising quantum-mechanical effect. J Semicond 36(2):024001. https://doi.org/10.1088/1674-4926/36/2/024001

    Article  CAS  Google Scholar 

  8. Jazaeri F, Barbut L, Sallese JM (2013) Modeling and design space of junctionless symmetric DG MOSFETs with long channel. IEEE TED 60(7):2120–2127

    Article  CAS  Google Scholar 

  9. Sallese, J.M., Chevillon, N.,Lallement,C.,Iñiguez,B., Prégaldiny, F. et al. Charge-based modeling of junctionless double-gate field-effect transistors. IEEE TED 58(8), 2628–2637 (2011)

  10. SILVACO International 2000, ATLAS: 2-D Device Simulation Software

  11. Pritha Banerjee and Subir Kumar Sarkar et al. "3-D analytical modeling of high-k gate stack dual-material tri-gate strained silicon-on-nothing MOSFET with dual-material bottom gate for suppressing short channel effects", in Journal of Computational Electronics, Springer, Vol.16.No.3,pp-631-6397

  12. Rout SP, Dutta P (2019) Impact of high mobility III-V compound material of a Short Channel thin-film SiGe double gate Junctionless MOSFET as a source. Engineering Reports 2(1). https://doi.org/10.1002/eng2.12086

  13. Arora ND, Hauser JR, Roulston DJ et al (Feb 1982) Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29(2):292–295

    Article  Google Scholar 

  14. Fossum JG, Lee DS et al (1982) A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid StateElectron 25:741–747

    CAS  Google Scholar 

  15. Saha S et al (Jan. 1995) MOSFET test structures for two-dimensional device simulation. Solid State Electron 38(1):69–73

    Article  CAS  Google Scholar 

  16. Chanda M, De S, Sarkar CK et al (2014) Modeling of characteristic parameters for nano-scale junctionless double gate MOSFET considering quantum mechanical effect. J Comput Electron 14(1):262–269

    Article  Google Scholar 

  17. Alioto, Massimo et al. (2010) Closed-form analysis of DC noise immunity in subthreshold CMOS logic circuits. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, https://doi.org/10.1109/iscas.2010.5537340

  18. Sen. D, Sengupta. S. J., Roy. S., Chanda. M., & Sarkar. S. K. et al. “D.C performance analysis of sub-threshold source-coupled logic circuit using double gate junction-less metal oxide semiconductor field effect transistor for low-power application”, Sens Lett, 17(7), 538–545, 2019. doi: https://doi.org/10.1166/sl.2019.4104

  19. Sen, Dipanjan, Savio Jay Sengupta, Swarnil Roy, Manash Chanda, and Subir Kumar Sarkar et al. (2019) Analytical modeling of D.C parameters of double gate junctionless MOSFET in near & subthreshold regime for RF circuit application. Nanoscience &Nanotechnology-Asia 09. https://doi.org/10.2174/2210681209666190730170031

  20. Gao H-W, Wang Y-H, Chiang T-K et al (2018) A new device-parameter-oriented DC power model for symmetric Operation of junction-less double-gate MOSFET working on low-power CMOS subthreshold logic gates. IEEE Trans Nanotechnol 17(3):424–431

    Article  CAS  Google Scholar 

  21. Sen D, Banik. B, & Roy S et al. (2018) Power and delay analysis of junction-less double gate cmos inverter in near and sub-threshold regime, IEEE Electron Devices Kolkata Conference (EDKCON). https://doi.org/10.1109/edkcon.2018.8770468

  22. Sengupta SJ, Sen D, Roy S, Chanda M, Sarkar SK et al (2019) D.C. performance analysis of high-K adiabatic logic circuits in sub-threshold regime for RF applications. Sens Lett 17(6):487–496. https://doi.org/10.1166/sl.2019.4102

    Article  Google Scholar 

Download references

Acknowledgements

Authors of this paper would like to thank the support obtained from Advanced VLSI Lab, Dept. of ECE, Meghnad Saha Institute of Technology, Kolkata, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanjan Sen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, D., Sengupta, S.J., Roy, S. et al. Analysis of D.C Parameters of Short-Channel Heterostructure Double Gate Junction-Less MOSFET Circuits Considering Quantum Mechanical Effects. Silicon 13, 1165–1175 (2021). https://doi.org/10.1007/s12633-020-00507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00507-0

Keywords

Navigation