Skip to main content
Log in

High-Temperature Stability of Titanium Boride Reinforced Alumina-Silicon Carbide Based Composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Alumina and Silicon Carbide based composites are routinely used in mechanical, automobile, ceramic and aerospace industries with numerous reinforcements. Reinforcements increase the physical, chemical, mechanical, thermal and tribological properties and make Al2O3-SiC suitable for a specific application. In this research, Titanium Boride powder of average size 95 nm reinforced into Al2O3-SiC nano-composite to enhance the thermal stability. The Al2O3-SiC nano-composite with 5, 10, 15 and 20 vol.% TiB2 were fabricated through pressureless sintering under an argon atmosphere at 1600 °C. The high-temperature thermal stability of Al2O3-SiC-TiB2 nano-composite was analyzed through the thermo-gravimetric analyzer (TG/DTA) with a warming rate of 10 °C/min and compared with Al2O3-SiC. A strong endothermic peak recorded at 1288 °C and excellent thermal stability recorded up to 1488 °C. 20% Titanium Boride added Alumina-Silicon Carbide nano-composite exhibited 6% reduced mass change and 20% increase in thermal stability at 1488 °C. The microstructure of the Al2O3-SiC-20 vol.% TiB2 was studied using XRD and SEM equipped with an EDX analysis facility. The SEM image displayed the surface morphology of the composite and XRD, EDX analysis exhibited the presence of Titanium particles with an average size of 95 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All the original data are available with the corresponding author.

References

  1. Zhao J, Stearns LC, Harmer MP, Chan HM, Miller GA, Cook RF (1993) Mechanical behavior of alumina–silicon carbide nanocomposites. J Am Ceram Soc 76(2):503–510

    CAS  Google Scholar 

  2. Deng Z-Y, Shi J-L, Zhang Y-F, Jiang D-Y, Guo J-K (1998) Pinning effect of SiC particles on mechanical properties of Al2O3–SiC ceramic matrix composites. J Eur Ceram Soc 18(5):501–508

    CAS  Google Scholar 

  3. Perez-Rigueiro J, Pastor J, Llorca J, Elices M, Miranzo P, Moya J (1998) Revisiting the mechanical behavior of alumina/silicon carbide nanocomposites. Acta Mater 46(15):5399–5411

    CAS  Google Scholar 

  4. Gao L, Wang H, Hong J, Miyamoto H, Miyamoto K, Nishikawa Y, Torre S (1999) Mechanical properties and microstructure of nano-SiC–Al2O3 composites densified by spark plasma sintering. J Eur Ceram Soc 19(5):609–613

    CAS  Google Scholar 

  5. Ihle J, Herrmann M, Adler J (2005) Phase formation in porous liquid phase sintered silicon carbide: part I:: interaction between Al2O3 and SiC. J Eur Ceram Soc 25 (7):987–995

  6. Shi X, Xu F, Zhang Z, Dong Y, Tan Y, Wang L, Yang J (2010) Mechanical properties of hot-pressed Al2O3/SiC composites. Mater Sci Eng A 527(18–19):4646–4649

    Google Scholar 

  7. Xu X, Lao X, Wu J, Zhang Y, Xu X, Li K (2016) Synthesis and characterization of Al2O3/SiC composite ceramics via carbothermal reduction of aluminosilicate precursor for solar sensible thermal storage. J Alloys Compd 662:126–137

    CAS  Google Scholar 

  8. Rangaraj L, Divakar C, Jayaram V (2010) Reactive hot pressing of ZrB2–ZrCx ultra-high temperature ceramic composites with the addition of SiC particulate. J Eur Ceram Soc 30(15):3263–3266

    CAS  Google Scholar 

  9. Desknys T, Menezes R, Fagury-NETO E, Kiminami R (2005) Síntese de Al2O3/SiC em Forno de Microondas: Estudo de Parâmetro do Processo. Cerâmica 51:343–348

    Google Scholar 

  10. Spiandorello F, Borsa C, Kiminami R (1999) Pós de Al2O3/SiC obtidos a partir de reação de redução carbotérmica. Cerâmica 45(296):193–197

    CAS  Google Scholar 

  11. Torosyan KS, Sedegov AS, Kuskov KV, Abedi M, Arkhipov DI, Kiryukhantsev-Korneev PV, Vorotilo S, Moskovskikh DO, Mukasyan AS (2020) Reactive, nonreactive, and flash spark plasma sintering of Al2O3/SiC composites—a comparative study. J Am Ceram Soc 103(1):520–530

    CAS  Google Scholar 

  12. Gupta T (1976) Crack healing and strengthening of thermally shocked alumina. J Am Ceram Soc 59(5–6):259–262

    CAS  Google Scholar 

  13. Stearns LC, Zhao J, Harmer MP (1992) Processing and microstructure development in Al2O3-SiC ‘nanocomposites’. J Eur Ceram Soc 10(6):473–477

    CAS  Google Scholar 

  14. Dong Y, Xu F, Shi X, Zhang C, Zhang Z, Yang J, Tan Y (2009) Fabrication and mechanical properties of nano−/micro-sized Al2O3/SiC composites. Mater Sci Eng A 504(1–2):49–54

    Google Scholar 

  15. Jaafar M, Bonnefont G, Fantozzi G, Reveron H (2010) Intergranular alumina–SiC micro-nanocomposites sintered by spark plasma sintering. Mater Chem Phys 124(1):377–379

    CAS  Google Scholar 

  16. Yazdi AR, Baharvandi H, Abdizadeh H, Purasad J, Fathi A, Ahmadi H (2012) Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina–silicon carbide micro/nanocomposites. Mater Des 37:251–255

    Google Scholar 

  17. Ibrahim MA, Sahin Y, Gidado AY, Said M (2019) Mechanical properties of aluminium matrix composite including SiC/Al2O3 by powder metallurgy-a review. GSJ 7(3):23–38

    Google Scholar 

  18. Xu Y, Zangvil A, Kerber A (1997) SiC nanoparticle-reinforced Al2O3 matrix composites: role of intra-and intergranular particles. J Eur Ceram Soc 17(7):921–928

    CAS  Google Scholar 

  19. Jeong YK, Nakahira A, Morgan PE, Niihara K (1997) Effect of milling conditions on the strength of alumina–silicon carbide nanocomposites. J Am Ceram Soc 80(5):1307–1309

    CAS  Google Scholar 

  20. Parchovianský M, Galusek D, Sedláček J, Švančárek P, Kašiarová M, Dusza J, Šajgalík P (2013) Microstructure and mechanical properties of hot pressed Al2O3/SiC nanocomposites. J Eur Ceram Soc 33(12):2291–2298

    Google Scholar 

  21. O'Sullivan D, Hampshire S, Kennedy T (1997) Fabrication, properties, and modelling of engineering ceramics reinforced with nanoparticles of silicon carbide. Brit Ceram Trans 96:121–127

    Google Scholar 

  22. Gao L, Hong J, Miyamoto H, Torre S (2000) Bending strength and microstructure of Al2O3 ceramics densified by spark plasma sintering. J Eur Ceram Soc 20(12):2149–2152

    CAS  Google Scholar 

  23. Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99(1154):974–982

    CAS  Google Scholar 

  24. Parchovianský M, Galusek D, Michálek M, Švančárek P, Kašiarová M, Dusza J, Hnatko M (2014) Effect of the volume fraction of SiC on the microstructure and creep behavior of hot pressed Al2O3/SiC composites. Ceram Int 40(1):1807–1814

    Google Scholar 

  25. Reveron H, Zaafrani O, Fantozzi G (2010) Microstructure development, hardness, toughness and creep behaviour of pressureless sintered alumina/SiC micro–nanocomposites obtained by slip-casting. J Eur Ceram Soc 30(6):1351–1357

    CAS  Google Scholar 

  26. Deng ZY, Shi JL, Zhang YF, Lai TR, Guo JK (1999) Creep and creep-recovery behavior in silicon-carbide-particle-reinforced alumina. J Am Ceram Soc 82(4):944–952

    CAS  Google Scholar 

  27. Jianxin D, Lili L, Jianhua L, Jinlong Z, Xuefeng Y (2005) Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys. Int J Mach Tools Manuf 45(12–13):1393–1401

    Google Scholar 

  28. Billman ER, Mehrotra PK, Shuster AF, Beechly C Machining with Al2O3-Sic Whisker cutting tools. In: Proceedings of the 12th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings, 1988. Wiley Online Library, pp 543–552

  29. Zawrah M, Aly M (2006) In situ formation of Al2O3–SiC–mullite from Al-matrix composites. Ceram Int 32(1):21–28

    CAS  Google Scholar 

  30. Pathak LC, Bandyopadhyay D, Srikanth S, Das SK, Ramachandrarao P (2001) Effect of heating rates on the synthesis of Al2O3–SiC composites by the self-propagating high-temperature synthesis (SHS) technique. J Am Ceram Soc 84(5):915–920

    CAS  Google Scholar 

  31. Samanta A, Dhargupta K, Ghatak S (2001) Near net shape SiC–mullite composites from a powder precursor prepared through an intermediate Al-hydroxyhydrogel. Ceram Int 27(2):195–199

    CAS  Google Scholar 

  32. Osendi MI, Bender BA, Lewis III D (1989) Microstructure and mechanical properties of mullite–silicon carbide composites. J Am Ceram Soc 72(6):1049–1054

    CAS  Google Scholar 

  33. Vencl A, Bobic I, Arostegui S, Bobic B, Marinković A, Babić M (2010) Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+ graphite particles. J Alloys Compd 506(2):631–639

    CAS  Google Scholar 

  34. Jit N, Anand K, Tyagi N (2011) Analysis of properties for SiC, Al2O3 and MgO as reinforcement keeping particle size at 0.220 in (A384. 1) 1x∣ reinforcemet) p∣ x. Int J Adv Eng Technol 2:312–319

  35. Kheder A, Marahleh G, Al-Jamea D (2011) Strengthening of aluminum by SiC, Al2O3 and MgO. Jordan J Mech Ind Eng 5(6)

  36. Mitrović S, Babić M, Stojanović B, Miloradović N, Pantić M, Džunić D (2012) Tribological potential of hybrid composites based on zinc and aluminium alloys reinforced with SiC and graphite particles. Tribol Ind 34(4):177–185

    Google Scholar 

  37. Rajesh S, VijayaRamnath B, Elanchezhian C, Aravind N, Rahul VV, Sathish S (2014) Analysis of mechanical behavior of glass fibre/Al2O3-SiC reinforced polymer composites. Procedia Eng 97:598–606

    CAS  Google Scholar 

  38. Elanchezhian C, Ramnath BV, Kumar KP, Saikeerthi S, Kumar MS Determination of mechanical properties of notched weft knitted glass fiber in variable thickness composites. In: Applied mechanics and materials, 2014. Trans Tech Publ, pp 124–127

  39. Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceram Int 42(10):12330–12340

    CAS  Google Scholar 

  40. Estili M, Sakka Y (2014) Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mater 15(6):064902

    PubMed  PubMed Central  Google Scholar 

  41. Dehgahi S, Amini R, Alizadeh M (2017) Microstructure and corrosion resistance of Ni-Al2O3-SiC nanocomposite coatings produced by electrodeposition technique. J Alloys Compd 692:622–628

    CAS  Google Scholar 

  42. Gül H, Kılıç F, Aslan S, Alp A, Akbulut H (2009) Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear 267(5–8):976–990

    Google Scholar 

  43. Feng Q, Li T, Teng H, Zhang X, Zhang Y, Liu C, Jin J (2008) Investigation on the corrosion and oxidation resistance of Ni–Al2O3 nano-composite coatings prepared by sediment co-deposition. Surf Coat Technol 202(17):4137–4144

    CAS  Google Scholar 

  44. Vaezi M, Sadrnezhaad S, Nikzad L (2008) Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf A Physicochem Eng Asp 315(1–3):176–182

    CAS  Google Scholar 

  45. Gao J, Suo J (2011) Preparation and characterization of the electrodeposited Cr–Al2O3/SiC composite coating. Appl Surf Sci 257(22):9643–9648

    CAS  Google Scholar 

  46. Neuman EW, Hilmas GE, Fahrenholtz WG (2017) A high strength alumina-silicon carbide-boron carbide triplex ceramic. Ceram Int 43(10):7958–7962

    CAS  Google Scholar 

  47. Liu J, Ownby PD (1991) Boron carbide reinforced alumina composites. J Am Ceram Soc 74(3):674–677

    CAS  Google Scholar 

  48. Jung C-H, Kim C-H (1991) Sintering and characterization of Al 2 O 3-B 4 C composites. J Mater Sci 26(18):5037–5040

    CAS  Google Scholar 

  49. Lin X, Ownby PD (2000) Pressureless sintering of B4C whisker reinforced Al2O3 matrix composites. J Mater Sci 35(2):411–418

    CAS  Google Scholar 

  50. Swarnakar AK, Huang S, Van der Biest O, Vleugels J (2010) Ultrafine Al2O3–B4C composites consolidated by pulsed electric current sintering. J Alloys Compd 499(2):200–205

    CAS  Google Scholar 

  51. Mohanavel V, Kumar MN, Mageshkumar K, Jayasekar C, Dineshbabu N, Udishkumar S (2017) Mechanical behavior of in situ ZrB2/AA2014 composite produced by the exothermic salt-metal reaction technique. Mater Today Proc 4(2):3215–3221

    Google Scholar 

  52. Farahbakhsh I, Ahmadi Z, Asl MS (2017) Densification, microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black. Ceram Int 43(11):8411–8417

    CAS  Google Scholar 

  53. Lis J, Miyamoto Y, Pampuch R, Tanihata K (1995) Ti3SiC-based materials prepared by HIP-SHS techniques. Mater Lett 22(3–4):163–168

    CAS  Google Scholar 

  54. YongMing L, ShuQin L, Jian C, RuiGang W, JianQiang L, Wei P (2003) Preparation and characterization of Al2O3–Ti3SiC2 composites and its functionally graded materials. Mater Res Bull 38(1):69–78

    Google Scholar 

  55. Istomin P, Nadutkin A, Grass V (2015) Fabrication of Ti3SiC2-based composites from titania-silica raw material. Mater Chem Phys 162:216–221

    CAS  Google Scholar 

  56. Schmidt J, Boehling M, Burkhardt U, Grin Y (2007) Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci Technol Adv Mater 8(5):376–382

    CAS  Google Scholar 

  57. Li F, Bao W, Wei X, Liu J-X, Zhang G-J, Wang H (2019) In-situ synthesis of porous ZrB2/ZrC/SiC ceramics decorated with SiC whiskers. Ceram Int 45(7):9313–9315

    CAS  Google Scholar 

  58. Coats A, Redfern J (1963) Thermogravimetric analysis. A review. Analyst 88(1053):906–924

    CAS  Google Scholar 

  59. Raffaitin A, Monceau D, Andrieu E, Crabos F (2006) Cyclic oxidation of coated and uncoated single-crystal nickel-based superalloy MC2 analyzed by continuous thermogravimetry analysis. Acta Mater 54(17):4473–4487

    CAS  Google Scholar 

  60. Bhatt RT (1992) Oxidation effects on the mechanical properties of a SiC-Fiber-reinforced reaction-bonded Si3N4 matrix composite. J Am Ceram Soc 75(2):406–412

    CAS  Google Scholar 

  61. Blokhina I, Ivanov V (2015) Analysis of TiB 2 powders oxidation in the air. J Therm Anal Calorim 119(1):123–130

    CAS  Google Scholar 

  62. Sathyaseelan B, Baskaran I, Sivakumar K (2013) Phase transition behavior of nanocrystalline Al2O3 powders. Soft Nanosci Lett 3(04):69–74

    CAS  Google Scholar 

  63. Hui-Mei Y, Chang-Wei L, Ling-Jun Q, Hua-Qing X, Tong-Geng X, Lan L (2006) Studies on the thermal stability of nano-SiC powder with excessive free carbon by TG-DTA-MS, XRD and TEM. J Therm Anal Calorim 85(3):657–660

    CAS  Google Scholar 

  64. Shahbahrami B, Bastami H, Shahbahrami N (2010) Studies on oxidation behaviour of TiB2 powder. Mater Res Innov 14(1):107–109

    CAS  Google Scholar 

  65. Tishchenko IY, Ilchenko O, Kuzema P (2015) TGA-DSC-MS analysis of silicon carbide and of its carbon-silica precursor. Хімія, фізика та технологія поверхні (6,№ 2): 216-223

  66. Sadabadi H, Aftabtalab A, Zafaria S, Shaker S, Ahmadipour M, Venkateswara Rao K (2013) High purity alpha alumina nanoparticle: synthesis and characterization. IJSER 4:1593–1596

    Google Scholar 

  67. Qiu F, Duan X, Dong B, Yang H, Lu J, Li X (2018) Effects of Cr and Zr addition on microstructures, compressive properties, and abrasive wear behaviors of in situ TiB2/cu cermets. Materials 11(8):1464

    PubMed Central  Google Scholar 

  68. Ahmadi Z, Hamidzadeh Mahaseni Z, Dashti Germi M, Shahedi Asl M (2019) Microstructure of spark plasma sintered TiB2 and TiB2–AlN ceramics. Advanced Ceramics Progress 5(1):36–40

    Google Scholar 

  69. Deng Y, Li X, Wu L, Yang Q, Chen Y Microstructure and performance of composites WAAM TiB2-Reinforced Al–Si-Based. In: Physics and engineering of metallic materials: proceedings of Chinese materials conference 2018, 2019. Springer, p 321

  70. Jang B-K, Enoki M, Kishi T, Oh H-K (1995) Effect of second phase on mechanical properties and toughening of Al2O3 based ceramic composites. Compos Eng 5(10–11):1275–1286

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Periyar University Salem, Tamilnadu, and NETZSCH Technologies India Private Limited Mogappair, Chennai, for providing instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamilselvam Nallusamy.

Ethics declarations

Conflicts of Interest/Competing Interests

No conflicts to report.

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallusamy, T., S, V. High-Temperature Stability of Titanium Boride Reinforced Alumina-Silicon Carbide Based Composite. Silicon 13, 1087–1095 (2021). https://doi.org/10.1007/s12633-020-00498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00498-y

Keywords

Navigation