Skip to main content
Log in

Response of Corn Seedlings (Zea mays L.) to Different Concentrations of Nitrogen in Absence and Presence of Silicon

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Corn plants are highly demanding of nitrogen and the application of silicon has been studied because it minimizes stress from different natures, and for the better utilization of some nutrients by the plants. Thus, the response of the plant to N can be increased by its association with silicon. The present study had the objective to evaluate the dry matter production, accumulation of nitrogen and silicon in the shoots of the plants as well as the physiological variables in corn culture, as a function of nitrogen concentrations in the nutrient solution in the absence and presence of silicon. Treatments consisted of nitrogen concentrations (1.4, 3.6, 7.1, 14.3, and 28.6 mmol L-1) in the absence and presence (1.8 mmol L-1) of silicon, silicic acid being used as the silicon source, arranged according to a completely random design with four replications. Corn plants (AG 1051) were cultivated in pots (800 mL). At 10 and 20 days after application of the treatments the dark green color index was examined and 21 days after application of the treatment the nitrate reductase activity, accumulation of N and Si, accumulation of proline and dry matter were evaluated. Significant interactions were observed only for dark green color index. Adding silicon resulted in higher N and Si concentrations in the plant shoots, and higher nitrate reductase activity with resulting higher shoot dry mass production, although it did not influence proline content in corn plant leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 12(01):2101–2115

    Article  Google Scholar 

  2. Ávila FW, Baliza DP, Faquin V, Araújo JL, Ramos SJ (2010) Silicon-nitrogen interaction in rice cultivated under nutrient solution. Rev Ciênc Agron 41(2):184–190

    Article  Google Scholar 

  3. Barbosa Filho MP, Snyder GH, Prabhu AS, Datnoff LE, Korndörfer GH (2000) Silicon importance for rice cultivation. Agronomic Information 89:1–8

    Google Scholar 

  4. Barbosa JC, W. Maldonado JR. (2010) AgroEstat – Sistema de análises estatísticas de ensaios agronômicos. Universidade Estadual Paulista, Jaboticabal

    Google Scholar 

  5. Barreto RF, Prado RM, Leal AJF, Troleis MJB, Junior GS, Monteiro CC, Carvalho RF (2016) Mitigation of ammonium toxicity by silicon in tomato depends on the ammonium concentration. Acta Agric Scand Sect B Soil Plant Sci 66(6):483–488. https://doi.org/10.1080/09064710.2016.1178324

    Article  CAS  Google Scholar 

  6. Bataglia, O. C., A. M. C. Furlani, J. P. F. Teixeira, P. R. Furlani, and J. R. Gallo. 1983. Métodos de análise química de plantas. Instituto Agronômico Campinas.

    Google Scholar 

  7. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39(1):205–209

    Article  CAS  Google Scholar 

  8. Bybordi A (2010) Influence of NO3:NH4 ratios and silicon on growth, nitrate reductase activity and fatty acid composition of canola under saline conditions. AJAR 5(15):1984–1992. https://doi.org/10.5897/AJAR09.064

    Article  Google Scholar 

  9. Campos CNS, de Mello PR, Caione G, de Lima Neto AJ, Mingotte FLC (2016) Silicon and excess ammonium and nitrate in cucumber plants. Afr J Agric Res 11:276–283

    Article  CAS  Google Scholar 

  10. Cazetta JO, Villela LCV (2004) Nitrate reductase activity in leaves and stems of tanner grass (Brachiaria radicans Napper). Sci Agric 61(6):640–648

    Article  CAS  Google Scholar 

  11. CHAPMAN SC, BARRETO HJ (1997) Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron J 89(4):557–562

    Article  Google Scholar 

  12. Oliveira LA de, Korndörfer GH, Pereira AC (2007) Silicon accumulation in rice in different rhizosphere pH conditions. Brazilian J Soil Sci 31(4):685–690

  13. Deus, A. C. F., Prado, R de M, Alvarez, RCF de, Oliveira, R. L. L. Felisberto, G de. (2019). Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants. Silicon. 11:1–9. https://doi.org/10.1007/s12633-019-00195-5

  14. Fumis, T. de F., and J. F. Pedras. (2002). Proline, diamine and polyamines accumulation in wheat cultivars submitted to water deficits. Pesq Agrop Brasileira, 37(4):449–453

  15. Giongo V, Bohnen H (2011) Relation between aluminum and silicon in maize genotypes resistant and sensitive at aluminum toxicity. Bioscience Journal 27(3):348–356

    Google Scholar 

  16. Godoy LJG, Santos TS, Villas Boas RL, Leite Junior JB (2008) Relative chlorophyll index and nitrogen status of fertigated coffee plants during the crop season. Revista Brasileira de Ciência do Solo 32:217–226

    Article  Google Scholar 

  17. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station, Berkeley

    Google Scholar 

  18. Korndörfer GH, Coelho NM, Snyder GH, Mizutani CT (1999) Evaluation of soil extractants for silicon availability in upland rice. Brazilian Journal of Soil Science 23:01–106

    Google Scholar 

  19. Korndörfer PH, Silva GC, Teixeira IR, Silva AG, Freitas RS (2010) Effect of silicon fertilizer on forage grasses and soil chemical characteristics. Pesquisa Agropecuária Tropical 40(2):119–125

    Google Scholar 

  20. Kraska JE, Breitenbeck GA (2010) Simple, robust method for quantifying silicon in plant. Tissue Communications in Soil Science and Plant Analysis 41(16-19):2075–2085

    Article  CAS  Google Scholar 

  21. Lima MA, Castro VF, Vidal JB, Filho JE (2011) Silicon application on plants of maize and cowpea under salt stress. Rev Ciênc Agron 42(2):398–403

    Article  Google Scholar 

  22. Ma, J. F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. In: Datnoff, L. E.; G. H. Snyder, G. H. Korndörfer. Silicon in agriculture.17-39.

  23. Malavolta, E. 2006. Mineral plant nutrition manual. Agronômica Ceres 638p.

  24. Malavolta E, Nogueira NGL, Heinrichs R, Higashi EN, Rodriguez V, Guerra E, Oliveira SC, Cabral CP (2004) Evaluation of nutritional status of the cotton plant with respect to nitrogen. Commun Soil Sci Plant Anal 35:1007–1019

    Article  CAS  Google Scholar 

  25. Marschner, H. 1995. Mineral nutrition of higher plants. 2 ed. Ed. Academic Press. San Diego, CA. 889.

  26. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121. https://doi.org/10.1016/j.plaphy.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  27. Mauad M, Grassi Filho H, Crusciol CAC, Corrêa JC (2003) Silicon contents in soil and in highland rice plants under different doses of silicon and nitrogen fertilization. Revista Brasileira de Ciência do Solo 27(5):867–873

    Article  CAS  Google Scholar 

  28. Mauad M, Crusciol CAC, Filho HG (2011) Dry matter and plant nutrition of upland rice under water deficit and silicon fertilization. Semina: Ciências Agrárias 32(3):939–948

    Google Scholar 

  29. Moura, H. C. da P., L. M. da Luz, A. G. T. Barreto, H. A. S. Silva, A. K. da S. Lobato, R. C. L. da Costa, and C. F. de O. Neto. 2009. Efeito do silício no CRA, aRN e amônio livre em Capsicum annuum L. sob estresse hídrico. XII Congresso Brasileiro de Fisiologia Vegetal, setembro de 19 a 22.

  30. Ohland RAA, de Souza LCF, Hernani LC, Marchetti ME, Gonçalves MC (2005) Soil cover crops and nitrogen fertilizing in corn in no tillage planting. Ciência e Agrotecnologia 29(3):538–544

    Article  Google Scholar 

  31. Ramos LA, Korndörfer GH, Nolla A (2008) Sources and accumulation of silicon in plants of lowland rice. Bragantia 67(3):751–757

    Article  CAS  Google Scholar 

  32. Rhein AFL, Santos DMM, Carlin SD (2011) Nitrate reductase enzyme activity and free proline contents in sugarcane roots under water and acid stress in soil. Semina: Ciências Agrárias 32(4):1345–1360

  33. Sagi M, Lips HS (1998) The levels of nitrate reductase and Mo Co in annual ryegrass as affected by nitrate and ammonium nutrition. Plant Sci 135:17–24

    Article  CAS  Google Scholar 

  34. Salvador JO, Moreira A, Muraoka T (1999) Visual symptoms of micronutrient deficiency and of mineral content in guava young plant leaves. Brazilian Agricultural Research 34(9):1655–1662

    Google Scholar 

  35. Sávio FL, da Silva GC, Teixeira IT, Borém A (2011) Biomass production and silicon content in forages under different sources of silicate. Semina: Ciências Agrárias 32(1):103–110

    Google Scholar 

  36. Schadchina TM, Dmitrieva VV (1995) Leaf chlorophyll content as a possible diagnostic mean for the evaluation of plant nitrogen uptake from the soil. J Plant Nutr 18:1427–1437

    Article  Google Scholar 

  37. Schaller J, Schoelynck J, Struyf E, Meire P (2016). Silicon 8:479. https://doi.org/10.1007/s12633-015-9302-y

    Article  CAS  Google Scholar 

  38. Schrader, L. E. Functions and translocations of nitrogen in higher plants. In: HAUCK, R. D. (Ed.). Nitrogen en crop production. American Society of Agronomy, 1984. p. 55- 65.

  39. Shi ZJ, Pan GQ, Zhou Q, Xie YC, Meng QT (2001) A study on the application of silicon fertilizer to cotton. China Cotton 28(7):17–18

    Google Scholar 

  40. Silva EC, Muraoka T, Guimarães GL, Buzetti S (2006) Accumulation of nutrientes in cover plants and by corn crop in sucession under diferentes nitrogen rate in no-tillage system. Brazilian Journal of Maze and Sorghum 5:202–217

    Google Scholar 

  41. Silva SM, Oliveira LJ, Faria FP, Reis EF, Carneiro MAC, Silva SM (2011) Activity of the enzyme reductase nitrate in corn cultivated under different levels of nitrogen and potassium fertilization. Ciência Rural 41(11):1931–1937

    Article  Google Scholar 

  42. Taiz, L., and E. Zeiger. 2004. Fisiologia vegetal. Artmed Editora S. A., Porto Alegre, RS (3):722.

  43. Viana EM, Kiehl JC (2010) Rates of nitrogen and potassium on growth of wheat plants. Bragantia 69(4):975–982

    Article  CAS  Google Scholar 

  44. Viciedo DO, de Prado RM, Toledo RL, dos Santos LCN, Calzada KP (2017) Response of radish seedlings (Raphanus sativus L.) to different concentrations of ammoniacal nitrogen in absence and presence of silicon. Agronomía Colombiana 35(2):198–204. https://doi.org/10.15446/agron.colomb.v35n2.62772

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelisa de Aquino Vidal Lacerda Soares.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.S., de Mello Prado, R., Soares, A.d.A.V.L. et al. Response of Corn Seedlings (Zea mays L.) to Different Concentrations of Nitrogen in Absence and Presence of Silicon. Silicon 13, 813–818 (2021). https://doi.org/10.1007/s12633-020-00480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00480-8

Keywords

Navigation