Skip to main content
Log in

Selection of Low Dimensional Material Alternatives to Silicon for Next Generation Tunnel Field Effect Transistors

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents a method-based investigation on the application of low dimensional materials like graphene, carbon nanotube (CNT), transition metal dichalcogenides (TMDCs) in tunnel field effect transistors (TFETs) for high on-current requirements. Three multi-criteria decision making methods (MCDM) are employed to arrive at a consensus on the appropriate material. The Ashby technique, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and VlseKriterijumska Optimazicija I Kompromisno Resenjein in Serbian (VIKOR) are utilized using constraints which decide a TFET’s performance. In order to select the material, dominant parameters have been included in the formulation which includes intrinsic material properties like the band gap, dielectric constant and electron effective mass along with an extrinsic parameter, namely, the on-state current to the off-state current ratio. The analysis demonstrates a remarkable agreement between the results of Ashby, TOPSIS and VIKOR methods, and concludes that carbon nanotube (CNT) has the most potential amongst all the candidates to be employed in the next generation TFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yong-Bin K (2010) Challenges for Nanoscale MOSFETs and emerging Nanoelectronics. Trans Electr Electron Mater 11:93. https://doi.org/10.4313/TEEM.2009.10.2.021

    Article  Google Scholar 

  2. Chopra S, Subramaniam S (2015) A review on challenges for MOSFET scaling. Int J Innov Sci Eng Technol 2:1055–1057

    Google Scholar 

  3. Taur Y, Ning TH (2009) Fundamentals of modern VLSI Devices

  4. Yau LD (1974) A simple theory to predict the threshold voltage of short-channel IGFET’s. Solid State Electron 17:1059–1063

    Article  CAS  Google Scholar 

  5. Model TV, Devices LC (2005) Threshold voltage model. in: mosfet modeling & BSIM3 user’s guide. pp 65–103

  6. Tamak P, Mehra R (2017) Review on tunnel field effect transistors ( TFET ). Int Res J Eng Technol 4:1195–1200

    Google Scholar 

  7. Esseni D, Pala M, Palestri P et al (2017). A review of selected topics in physics based modeling for tunnel field-effect transistors Semicond Sci Technol:32. https://doi.org/10.1088/1361-6641/aa6fca

  8. Lu H, Seabaugh A (2014) Tunnel field-effect transistors: state-of-the-art. IEEE J Electron Devices Soc 2:44–49. https://doi.org/10.1109/JEDS.2014.2326622

    Article  Google Scholar 

  9. Madan J, Chaujar R (2016) Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: a solution for suppressed ambipolarity and enhanced ON state behavior. Appl Phys A Mater Sci Process 122:1–9. https://doi.org/10.1007/s00339-016-0510-0

    Article  CAS  Google Scholar 

  10. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-$\kappa$ gate dielectric. IEEE Trans Electron Devices 54:1725–1733. https://doi.org/10.1109/TED.2007.899389

    Article  CAS  Google Scholar 

  11. Madan J, Gupta RS, Chaujar R (2017) Performance investigation of heterogeneous gate dielectric-gate metal engineered–gate all around-tunnel FET for RF applications. Microsyst Technol 23:4081–4090. https://doi.org/10.1007/s00542-016-3143-5

    Article  CAS  Google Scholar 

  12. Verhulst AS, Vandenberghe WG, Maex K, Groeseneken G (2007) Tunnel field-effect transistor without gate-drain overlap. Appl Phys Lett 91:1–4. https://doi.org/10.1063/1.2757593

    Article  CAS  Google Scholar 

  13. Mallik A, Chattopadhyay A, Guin S, Karmakar A (2013) Impact of a spacer-drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling. IEEE Trans Electron Devices 60:935–943. https://doi.org/10.1109/TED.2013.2237776

    Article  CAS  Google Scholar 

  14. Naderi A, Keshavarzi P (2012) The effects of source/drain and gate overlap on the performance of carbon nanotube field effect transistors. Superlattice Microst 52:962–976. https://doi.org/10.1016/j.spmi.2012.07.016

    Article  CAS  Google Scholar 

  15. Lee HK, Choi WY (2013) Linearity of hetero-gate-dielectric tunneling field-effect transistors. J Semicond Technol Sci 13:551–555. https://doi.org/10.5573/JSTS.2013.13.6.551

    Article  Google Scholar 

  16. Kumar D, Dasgupta S, Ts JDS, et al (2017) With high on current and reduced turn on voltage

  17. Gandhi R, Chen Z, Singh N et al (2011) Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing (≤50 mV/decade) at room temperature. IEEE Electron Device Lett 32:437–439. https://doi.org/10.1109/LED.2011.2106757

    Article  CAS  Google Scholar 

  18. Vishnoi R, Kumar MJ (2014) Compact analytical drain current model of gate-all-around nanowire tunneling FET. IEEE Trans Electron Devices 61:2599–2603. https://doi.org/10.1109/TED.2014.2322762

    Article  Google Scholar 

  19. Arun Samuel TS, Arumugam N, Chandra ST (2017) Analytical approach and simulation of GaN single gate TFET and gate all around TFET. Trans Electr Eng Electron Commun 15:1–7

    Google Scholar 

  20. Beneventi GB, Gnani E, Gnudi A et al (2014) Dual-metal-gate InAs tunnel FET with enhanced turn-on steepness and high on-current. IEEE Trans Electron Devices 61:776–784. https://doi.org/10.1109/TED.2014.2298212

    Article  CAS  Google Scholar 

  21. Kao KH, Verhulst AS, Vandenberghe WG et al (2012) Optimization of gate-on-source-only tunnel FETs with counter-doped pockets. IEEE Trans Electron Devices 59:2070–2077. https://doi.org/10.1109/TED.2012.2200489

    Article  CAS  Google Scholar 

  22. Mitra SK, Bhowmick B (2019) An analytical drain current Model of gate-on-source/channel SOI-TFET. Silicon. https://doi.org/10.1007/s12633-019-0090-7

  23. Yang Z (2016) Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett 37:839–842. https://doi.org/10.1109/LED.2016.2574821

    Article  CAS  Google Scholar 

  24. Convertino C, Zota CB, Schmid H et al (2018) III-V heterostructure tunnel field-effect transistor. J Phys Condens Matter 30. https://doi.org/10.1088/1361-648X/aac5b4

  25. Kim G, Lee J, Kim JH, Kim S (2019) High on-current Ge-channel heterojunction tunnel field-effect transistor using direct band-to-band tunneling. Micromachines 10. https://doi.org/10.3390/mi10020077

  26. Singh A, Khosla M, Raj B (2017) Design and analysis of electrostatic doped Schottky barrier CNTFET based low power SRAM. AEU - Int J Electron Commun 80:67–72. https://doi.org/10.1016/j.aeue.2017.06.030

    Article  Google Scholar 

  27. Lam KT, Cao X, Guo J (2013) Device performance of heterojunction tunneling field-effect transistors based on transition metal dichalcogenide monolayer. IEEE Electron Device Lett 34:1331–1333. https://doi.org/10.1109/LED.2013.2277918

    Article  CAS  Google Scholar 

  28. Balaji Y, Smets Q, Lockhart De La Rosa CJ et al (2018) Tunneling transistors based on MoS2/MoTe2Van der Waals Heterostructures. IEEE J Electron Devices Soc 6:1018–1055. https://doi.org/10.1109/JEDS.2018.2815781

    Article  Google Scholar 

  29. Jena D (2013) Tunneling transistors based on Graphene and 2-D crystals. Proc IEEE 101:1585–1602. https://doi.org/10.1109/JPROC.2010.2070470

    Article  CAS  Google Scholar 

  30. Gupta N, Haldiya V (2018) High-k gate dielectric selection for germanium based CMOS devices. Int J Nanoelectron Mater 11:119–126

    Google Scholar 

  31. Kandpal K, Gupta N (2016) Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J Mater Sci Mater Electron 27:5972–5981. https://doi.org/10.1007/s10854-016-4519-0

    Article  CAS  Google Scholar 

  32. Deshmukh D, Angira M (2019) Investigation on switching structure material selection for RF-MEMS shunt capacitive switches using Ashby, TOPSIS and VIKOR. Trans Electr Electron Mater 20:181–188. https://doi.org/10.1007/s42341-018-00094-3

    Article  Google Scholar 

  33. Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48:359–369. https://doi.org/10.1016/S1359-6454(99)00304-3

    Article  CAS  Google Scholar 

  34. Ashby M (2010) Materials selection in mechanical design: fourth edition

  35. Hwang CL, Masud ASM (1979) Multiple objective decision making - methods and applications. Lect Notes Econ Math Syst 1:358. https://doi.org/10.1007/978-3-642-45511-7

    Article  Google Scholar 

  36. Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156:445–455. https://doi.org/10.1016/S0377-2217(03)00020-1

    Article  Google Scholar 

  37. Lv Y, Qin W, Wang C et al (2019) Recent advances in low-dimensional Heterojunction-based tunnel field effect transistors. Adv Electron Mater 5:1–15. https://doi.org/10.1002/aelm.201800569

    Article  CAS  Google Scholar 

  38. Roy T, Tosun M, Kang JS et al (2014) Field-effect transistors built from all two-dimensional material components. ACS Nano 8:6259–6264. https://doi.org/10.1021/nn501723y

    Article  CAS  PubMed  Google Scholar 

  39. Ilatikhameneh H, Tan Y, Novakovic B et al (2015) Tunnel field-effect transistors in 2-D transition metal Dichalcogenide materials. IEEE J Explor Solid-State Comput Devices Circuits 1:12–18. https://doi.org/10.1109/JXCDC.2015.2423096

    Article  Google Scholar 

  40. Strojnik M, Kovic A, Mrzel A, et al (2014) MoS 2 nanotube field effect transistors. AIP Adv 4:0–5. https://doi.org/10.1063/1.4894440

  41. Appenzeller J, Lin YM, Knoch J et al (2005) Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design. IEEE Trans Electron Devices 52:2568–2576. https://doi.org/10.1109/TED.2005.859654

    Article  CAS  Google Scholar 

  42. Jiang XW, Li SS (2014) Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides. Appl Phys Lett 104:1–5. https://doi.org/10.1063/1.4878515

    Article  CAS  Google Scholar 

  43. Jahan A, Ismail MY, Sapuan SM, Mustapha F (2010) Material screening and choosing methods - a review. Mater Des 31:696–705. https://doi.org/10.1016/j.matdes.2009.08.013

    Article  Google Scholar 

  44. Liao TW (2015) Two interval type 2 fuzzy TOPSIS material selection methods. Mater Des 88:1088–1099. https://doi.org/10.1016/j.matdes.2015.09.113

    Article  Google Scholar 

  45. Mousavi-Nasab SH, Sotoudeh-Anvari A (2017) A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater Des 121:237–253. https://doi.org/10.1016/j.matdes.2017.02.041

    Article  Google Scholar 

  46. Opricovic S (1998) Multicriteria optimization of civil engineering systems

  47. Léonard F, Tersoff J (2003) Dielectric response of semiconducting carbon nanotubes. Appl Phys Lett 81:4835–4837. https://doi.org/10.1063/1.1530373

    Article  CAS  Google Scholar 

  48. Trivedi AR, Amir MF, Mukhopadhyay S (2014) Ultra-low power electronics with Si/Ge tunnel FET. 1–6. https://doi.org/10.7873/date.2014.244

  49. Samuel TSA, Balamurugan NB (2014) Analytical modeling and simulation of germanium single gate silicon on insulator TFET. J Semicond 35. https://doi.org/10.1088/1674-4926/35/3/034002

  50. Bessler R, Duerig U, Koren E (2019) The dielectric constant of a bilayer graphene interface. Nanoscale Adv 1:1702–1706. https://doi.org/10.1039/c8na00350e

    Article  CAS  Google Scholar 

  51. Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823. https://doi.org/10.1038/nature08105

    Article  CAS  PubMed  Google Scholar 

  52. Fiori G, Iannaccone G (2009). On the possibility of tunable-gap bilayer graphene FET 30:261–264

    CAS  Google Scholar 

  53. Haddara YM, Ashburn P, Bagnall DM (2017) Silicon-germanium: properties, growth and applications. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Cham, p 1

    Google Scholar 

  54. Huang C-TT (2015) Electrical and material properties of strained silicon/relaxed silicon germanium Heterostructures for single-Electron quantum dot applications. 1–127

  55. Barber HD (1967) Effective mass and intrinsic concentration in silicon. Solid State Electron 10:1039–1051. https://doi.org/10.1016/0038-1101(67)90122-0

    Article  CAS  Google Scholar 

  56. Sze SM, Ng KK (2006) Appendix F properties of important semiconductors. In: physics of semiconductor Devices. John Wiley & Sons, Ltd, p 789

    Google Scholar 

  57. Zhou HL, Jiang J, Zhang MX, Fang L (2010) Opitimization of tunneling carbon nanotube-FETs based on stair-case doping strategy. Sci China Inf Sci 53:2696–2704. https://doi.org/10.1007/s11432-010-4102-x

    Article  Google Scholar 

  58. Javey A, Tu R, Farmer DB et al (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 5:345–348. https://doi.org/10.1021/nl047931j

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Goswami.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manocha, P., Kandpal, K. & Goswami, R. Selection of Low Dimensional Material Alternatives to Silicon for Next Generation Tunnel Field Effect Transistors. Silicon 13, 707–717 (2021). https://doi.org/10.1007/s12633-020-00452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00452-y

Keywords

Navigation