Skip to main content
Log in

Probing the Structural and Antimicrobial Study on a Sol–Gel Derived Velosef-Loaded Bioactive Calcium Magneso-Silicate Xerogel

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The nature of the opening silicate- based surface affects the chemical interaction, spectroscopic and antimicrobial efficiency. The aim of this approach was to evaluate the spectroscopic properties and the antimicrobial activity of Velosef-loaded bioactive calcium magneso-silicate xerogel (CMS) prepared by green sol gel method. Loading of Velosef drug into the controlled calcium magneso-silicate xerogel was analyzed by XRD, HR-TEM, FE-SEM, and UV-Vis-absorption spectra. The particle distribution and surface morphological analysis indicated the establishment of calcium magneso-silicate/Velosef xero-gels. The UV-absorption exposed an increase in the refractive index and the band gap values of the xerogels with increasing Velosef content. The prepared calcium magneso-silicate/Volesef loaded xerogel samples exerted higher antimicrobial activity versus the three tested model microorganisms. The highest antimicrobial efficiency was recorded in case of Candida albicans at concentration of 0.03 wt% from Volesef loaded nanocomposites (37 mm), whereas the lower antimicrobial efficiency (26 mm) was recorded versus B. mycoides at the same concentration. These results appears that the calcium magneso-silicate xerogel-based to be a promising nano-structures material for spectroscopic and bio-applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elsayed MA, Othman AM, Hassan MM, Elshafei AM (2018) Optimization of silver nanoparticles biosynthesis mediated by Aspergillus niger NRC1731 through application of statistical methods: enhancement and characterization. 3 biotech. https://doi.org/10.1007/s13205-018-1158-6

  2. El Nahrawy AM, Hammad ABA, Youssef AM et al (2019) Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:Cu nanocomposites. Appl Phys A Mater Sci Process 125:46–49. https://doi.org/10.1007/s00339-018-2351-5

    Article  CAS  Google Scholar 

  3. Othman AM, Elsayed MA, Elshafei AM, Hassan MM (2017) Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synthesis. J Genet Eng Biotechnol. https://doi.org/10.1016/j.jgeb.2017.08.003

  4. Kim YN, Shao GN, Jeon SJ et al (2013) Sol-gel synthesis of sodium silicate and titanium oxychloride based TiO2-SiO2 aerogels and their photocatalytic property under UV irradiation. Chem Eng J. https://doi.org/10.1016/j.cej.2013.07.072

  5. Rasdi NM, Fen YW, Azis RS, Omar NAS (2017) Photoluminescence studies of cobalt (II) doped zinc silicate nanophosphors prepared via sol-gel method. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2017.09.073

  6. Omar NAS, Fen YW, Matori KA (2017) Europium doped low cost Zn2SiO4 based glass ceramics: a study on fabrication, structural, energy band gap and luminescence properties. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2016.12.040

  7. Ilkhechi NN, Kaleji BK (2017) Temperature stability and Photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant. Silicon. 9:943–948. https://doi.org/10.1007/s12633-015-9363-y

    Article  CAS  Google Scholar 

  8. Ma J, Chen CZ, Wang DG et al (2012) Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO-MgO-SiO 2-P 2O 5 system. Ceram Int. https://doi.org/10.1016/j.ceramint.2012.05.056

  9. Elnahrawy AM, Kim YS, Ali AI (2016) Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.03.210

  10. Nahrawy AM El, Hemdan BA, Hammad ABA et al (2019) Microstructure and antimicrobial properties of bioactive cobalt co-doped copper aluminosilicate nanocrystallines, Silicon. https://doi.org/10.1007/s12633-019-00326-y

  11. Georgieva I, Danchova N, Gutzov S, Trendafilova N (2012) DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials. J Mol Model 18:2409–2422. https://doi.org/10.1007/s00894-011-1257-3

    Article  CAS  PubMed  Google Scholar 

  12. Nahrawy AME, Moez AA, Saad AM (2018) Sol-gel preparation and spectroscopic properties of modified sodium silicate /tartrazine dye nanocomposite. Silicon. 10:2117–2122. https://doi.org/10.1007/s12633-017-9740-9

    Article  CAS  Google Scholar 

  13. Yoshino H, Kamiya K, Nasu H (1990) IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses. J Non-Cryst Solids. https://doi.org/10.1016/0022-3093(90)91024-L

  14. Elnahrawy AM, Ali AI (2014) Influence of reaction conditions on sol-gel process producing SiO2 and SiO2 -P2O5 gel and glass. J Glas Ceram. https://doi.org/10.4236/njgc.2014.42006

  15. El Nahrawy AM, AbouHammad AB (2016) A facile co-gelation sol gel route to synthesize CaO: P2O5: SiO2 xerogel embedded in chitosan nanocomposite for bioapplications. Int J PharmTech Res 9, 16–21

  16. Ilkhechi NN, Kaleji BK, Mozammel M, Ghobadi N (2017) Effect of Cu and Zr co-doped SiO2 nanoparticles on the stability of phases (quartz-tridymite-cristobalite) and degradation of methyl orange at high temperature. Silicon. 9:293–299. https://doi.org/10.1007/s12633-016-9416-x

    Article  CAS  Google Scholar 

  17. Catauro M, Papale F, Bollino F (2016) Coatings of titanium substrates with xCaO·(1 - x)SiO<inf>2</inf> sol-gel materials: characterization, bioactivity and biocompatibility evaluation. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2015.09.033

  18. Alijani M, Ilkhechi NN (2018) Effect of Ni doping on the structural and optical properties of TiO2 nanoparticles at various concentration and temperature. Silicon. 10:2569–2575. https://doi.org/10.1007/s12633-018-9792-5

    Article  CAS  Google Scholar 

  19. Hemdan BA, El Nahrawy AM, Mansour AFM, Hammad ABA (2019) Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment. Environ Sci Pollut Res 26:9508–9523. https://doi.org/10.1007/s11356-019-04431-8

    Article  CAS  Google Scholar 

  20. Kaur G, Pickrell G, Sriranganathan N et al (2016) Review and the state of the art: sol– gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater 104B: 1248–1275

  21. Youssef AM, El-Nahrawy AM, Abou Hammad AB (2017) Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.01.059

  22. Corrêa GG, Morais EC, Brambilla R et al (2014) Effects of the sol-gel route on the structural characteristics and antibacterial activity of silica-encapsulated gentamicin. Coll Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2014.01.043

  23. Voicu G, Dogaru I, Meliţă D, Meştercă R, Spirescu V, Stan E, Tote E, Mogoantă L, Mogoşanu GD, Grumezescu AM, Truşcă R, Vasile E, Iordache F, Chifiriuc MC, Holban AM (2015) Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance. J Nanopart Res 17:1–13. https://doi.org/10.1007/s11051-015-3004-7

    Article  CAS  Google Scholar 

  24. Brum LFW, dos Santos C, Gnoatto JA et al (2019) Silica xerogels as novel streptomycin delivery platforms. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2019.101210

  25. Othman AM, Elsayed MA, Al-Balakocy NG et al (2019) Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. J Genet Eng Biotechnol 17:1–13. https://doi.org/10.1186/s43141-019-0008-1

    Article  Google Scholar 

  26. Battisha IK, El Beyally A, Soliman SL, Nahrawi AMS (2007) Structural and optical studies of activated thin film and monolith nano-structure silica gel with different rare earth elements prepared by sol - gel techniques. Indian J Pure Appl Phys 441–453

  27. Kamal M, Battisha IK, Salem MA, El Nahrawy AMS (2011) Structural and thermal properties of monolithic silica-phosphate (SiO 2-P2O5) gel glasses prepared by sol-gel technique. J Sol-Gel Sci Technol 58:507–517. https://doi.org/10.1007/s10971-011-2420-0

    Article  CAS  Google Scholar 

  28. Mansy MS, Hassan RS, Selim YT, Kenawy SH (2017) Evaluation of synthetic aluminum silicate modified by magnesia for the removal of 137Cs, 60Co and 152+154Eu from low-level radioactive waste. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2017.09.042

  29. Aguiar H, Serra J, González P, León B (2009) Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2009.01.010

  30. Shi X, Xu S, Lin J et al (2009) Synthesis of SiO 2 -polyacrylic acid hybrid hydrogel with high mechanical properties and salt tolerance using sodium silicate precursor through sol-gel process. Mater Lett. https://doi.org/10.1016/j.matlet.2008.11.029

  31. Innocenzi P (2003) Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids. https://doi.org/10.1016/S0022-3093(02)01637-X

  32. Ossman M, Mansour M, Fattah M et al (2014) Peanut shells and talc powder for removal of hexavalent chromium from aqueous solutions. Bulg Chem Commun 46(3):629–639

  33. Xue Y, Wang L, Shao Y et al (2014) Facile and green fabrication of biomimetic gelatin-siloxane hybrid hydrogel with highly elastic properties for biomedical applications. Chem Eng J. https://doi.org/10.1016/j.cej.2014.04.049

  34. Oh EO, Gupta RK, Whang CM (2003) Effects of pH and dye concentration on the optical and structural properties of coumarin-4 dye-doped SiO2-PDMS xerogels. J Sol-Gel Sci Technol. https://doi.org/10.1023/A:1027442627485

  35. Zhu YF, Shi JL, Li YS et al (2005) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2005.06.015

  36. Guo X, Wu J, Yiu YM et al (2013) Drug-nanocarrier interaction - tracking the local structure of calcium silicate upon ibuprofen loading with X-ray absorption near edge structure (XANES). Phys Chem Chem Phys. https://doi.org/10.1039/c3cp50699a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany M. El Nahrawy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelnaga, A.M., Meaz, T.M., Othman, A.M. et al. Probing the Structural and Antimicrobial Study on a Sol–Gel Derived Velosef-Loaded Bioactive Calcium Magneso-Silicate Xerogel. Silicon 13, 623–631 (2021). https://doi.org/10.1007/s12633-020-00448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00448-8

Keywords

Navigation