Skip to main content
Log in

Threshold Voltage Modeling of tri-Gate Schottky-Barrier (TGSB) Field-Effect-Transistors (FETs)

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, a threshold voltage model of Tri-Gate Schottky-Barrier (TGSB) MOSFET is presented by coupling threshold voltage models of symmetric and asymmetric double-gate Schottky-Barrier (SB) MOSFET structures giving due weight to each structure. The electrostatic potentials of double-gate SB MOSFETs are obtained using evanescent mode analysis method considering light doping in the channel region. In TGSB MOSFETs, the leakiest path in the subthreshold regime of device operation is located at the mid of the bottom of the channel region. The minimum potential of this leakiest path is considered to be the virtual cathode potential, which is subsequently used to calculate the threshold voltage of the SB MOS devices. The effects of device parameters like oxide thickness, buried oxide (BOX) thickness, channel height, width, and length, doping concentration and Schottky-Barrier height on threshold voltage have been extensively studied in this work. The proposed model results have been verified with numerical simulation results obtained from the 3-D device simulator of Sentaurus TCAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabral S, Zoccal L, Crepaldi P, Pimenta T (2012) Standard CMOS implementation of Schottky barrier diodes for biomedical RFID. 2012 24th international conference on microelectronics (ICM) 1-4

  2. Aitken R, Chandra V, Myers J, Sandhu B, Shifren L, Yeric G (2014) Device and technology implications of the internet of things. 2014 symposium on VLSI technology (VLSI-technology): digest of technical papers 1-4

  3. Colinge J-P (2007) FinFETs and other multi-gate transistors. Springer Berlin

  4. Larson J, Snyder J-P (2006) Overview and status of metal S/D Schottky barrier MOSFET technology. IEEE Trans Electron Devices 53:1048–1058

    Article  CAS  Google Scholar 

  5. Xiong S, King T, Bokor J (2005) A comparison study of symmetric ultrathin-body double-gate devices with metal S/D and doped S/D. IEEE Trans Electron Devices 52:1859–1867

    Article  CAS  Google Scholar 

  6. Mochizuki T, Wise K-D (1984) An n-channel MOSFET with Schottky source and drain. IEEE Electron Device Lett 5:108–111

    Article  Google Scholar 

  7. Jang M, Kim Y, Shin J, Lee S (2004) A 50-nm-gate- length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistor. Appl Phys Lett 84:741–743

    Article  CAS  Google Scholar 

  8. Kedzierski J, Xuan P, Anderson E-H, Bokor J, King T-J and Hu C (2000) Complementary silicide source/drain thin body MOSFETs for the 20-nm gate length regime. IEDM Tech Dig 57–60

  9. Jang M (2016) Scalability of Schottky barrier metal-oxide-semiconductor transistors. Nano Converg 3:1–7

    Article  Google Scholar 

  10. Jang M, Kim Y, Shin J, Lee S (2005) Characterization of erbium silicided Schottky diode junction. IEEE Electron Device Lett 26:354–356

    Article  CAS  Google Scholar 

  11. Zhu S, Chen J, Li M-F, Lee S-J, Singh J, Zhu C-X, Du A, Tung C-H, Chin A, Kwong D-L (2004) N-type Schottky barrier S/D MOSFET using ytterbium silicide. IEEE Electron Device Lett 25:565–567

    Article  CAS  Google Scholar 

  12. Lee R-T-P, Lim A-E-J, Tan K-M, Liow T-Y, Lo G-Q, Samudra G-S, Chi D-Z, Yeo Y-C (2007) N-channel FinFETs with 25-nm gate length and Schottky-barrier source and drain featuring ytterbium silicide. IEEE Electron Device Lett 28:164–167

    Article  CAS  Google Scholar 

  13. Schwarz M, Holtij T, Kloes A, Iñíguez B (2013) Performance study of a Schottky barrier double-gate MOSFET using a two-dimensional analytical model. IEEE Trans Electron Devices 60:884–886

    Article  Google Scholar 

  14. Schwarz M, Holtij T, Kloes A, Iñíguez B (2013) Compact modeling solutions for short-channel SOI Schottky barrier MOSFETs. Solid State Electron 82:86–98

    Article  CAS  Google Scholar 

  15. Schwarz M, Kloes A (2016) Analysis and performance study of III-V Schottky barrier double-gate MOSFETs using a 2-D analytical model. IEEE Trans Electron Devices 63:2757–2763

    Article  CAS  Google Scholar 

  16. Zhang M, Knoch J, Zhang S, Feste S, SchrÖter M, Mantl S (2008) Threshold voltage variation in SOI Schottky-barrier MOSFETs. IEEE Trans Electron Devices 55:858–865

    Article  CAS  Google Scholar 

  17. Xu B, Xia Z, Liu X, Han R (2006) An analytical potential model of double-gate MOSFETs with Schottky source/drain. Proc ICSICT:1296–1298

  18. Li P, Hu G, Liu R, Tang T (2011) Electric potential and threshold voltage models for double-gate Schottky-barrier source-drain MOSFETs. Microelectron J 42:1164–1168

    Article  Google Scholar 

  19. Gudmundsson V, Hellstrom P, Luo J, Lu J, Zhang S, Ostling M (2009) Fully depleted UTB and Trigate N-channel MOSFETs featuring low-temperature PtSi Schottky-barrier contacts with dopant segregation. IEEE Electron Device Lett 30:541–543

    Article  CAS  Google Scholar 

  20. Chiang T-K (2012) A novel short-channel model for threshold voltage of trigate MOSFETs with localized trapped charges. IEEE Trans Device Mater Rel 12:311–316

    Article  Google Scholar 

  21. Li X, Ma L, Ai Y, Han W (2017) From parabolic approximation to evanescent mode analysis on SOI MOSFET. J Semicond 38:024005

    Article  Google Scholar 

  22. Tsormpatzoglou A, Dimitriadis C-A, Clerc R, Pananakakis G, Ghibaudo G (2008) Semi-analytical modeling of short-channel effects in lightly doped silicon tri-gate MOSFETs. IEEE Trans Electron Devices 55:2623–2631

    Article  CAS  Google Scholar 

  23. Chen Q (2003) Scaling limits and opportunities for double-gate MOSFETs

  24. Dey A, Chakravorty A, DasGupta N, DasGupta A (2008) Analytical model of subthreshold current and slope for asymmetric 4-T and 3-T double-gate MOSFETs. IEEE Trans Electron Devices 55:3442–3449

    Article  CAS  Google Scholar 

  25. Imam M-A, Osman M-A, Osman A-A (1999) Threshold voltage model for deep-submicron fully depleted SOI MOSFETs with back gate substrate induced surface potential effects. Microelectron Reliab 39:487–495

    Article  Google Scholar 

  26. Gola D, Singh B, Tiwari PK (2019) Subthreshold characteristic analysis and models for tri-gate SOI MOSFETs using substrate Bias induced effects. IEEE Trans Nanotechnol 18:329–335

    Article  CAS  Google Scholar 

  27. Sentaurus Device User Guide Version N-2017.09 (2016) Synopsys Mountain View CA USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. T. N. Srinivas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, P.S.T.N., Kumar, A. & Tiwari, P.K. Threshold Voltage Modeling of tri-Gate Schottky-Barrier (TGSB) Field-Effect-Transistors (FETs). Silicon 13, 25–35 (2021). https://doi.org/10.1007/s12633-020-00400-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00400-w

Keywords

Navigation