pp 1–15 | Cite as

Stereometric Analysis of Effects of Heat Stressing on Micromorphology of Si Single Crystals

  • Dallaev RashidEmail author
  • Sebastian Stach
  • Ştefan Ţălu
  • Dinara Sobola
  • Alia Méndez-Albores
  • Gabriel Trejo Córdova
  • Lubomír Grmela
Original Paper


The purpose of this work is study of silicon single crystal wafer thermal stability in correlation with three-dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were heated up to 500 °C for the period of 2 and 4 h. Then the surfaces of wafers were processed by ion beam. The difference in surface structure of processed and reference samples was investigated. Structural and compositional studies are provided by X-ray photoelectron spectroscopy. Stereometric analysis was carried out on the basis of AFM-data, for stressed and unstressed samples. The results of stereometric analysis show the correlation of statistical characteristics of surface topography and structure of surface and near-surface area. Characterization techniques in combination with data processing methodology are essential for description of the surface condition. All the extracted topographic parameters and texture features have demonstrated a deeper analysis that can be used for new micro-topography models.


Atomic force microscopy Si single crystal wafers Stereometric analysis Topography X-ray photoelectron spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Research described in the paper was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601), by the National Sustainability Program under grant LO1401 and by Internal Grant Agency of Brno University of Technology, grant No. FEKT-S-17-4626. For the research, infrastructure of the SIX Center was used. Part of the work was carried out with the support of CEITEC Nano Research Infrastructure (ID LM2015041, MEYS CR, 2016–2019), CEITEC Brno University of Technology.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no competing interests.


  1. 1.
    Sengupta A, Sarkar CK (eds) (2015) Introduction to Nano: Basics to Nanoscience and Nanotechnology. Springer.
  2. 2.
    Ţălu Ş (2015) Micro and nanoscale characterization of three dimensional surfaces. Basics and applications, Napoca Star Publishing House, Cluj-NapocaGoogle Scholar
  3. 3.
    Šesták J, Simon P (2012) Thermal analysis of micro, Nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. Springer Science & Business Media.
  4. 4.
    Méndez A, Reyes Y, Trejo G, Stępień K, Ţălu Ş (2015) Micromorphological characterization of zinc/silver particle composite coatings. Microsc Res Tech 78:1082–1089. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Abdulagatov AI, Ramazanov SM, Dallaev RS, Murliev EK, Palchaev DK, Rabadanov MK, Abdulagatov IM (2018) Atomic layer deposition of aluminum nitride using Tris(diethylamido)aluminum and hydrazine or ammonia. Russ Microelectron 47(2):118–130. CrossRefGoogle Scholar
  6. 6.
    Mazzocchi, V., Sennikov, P. G., Bulanov, A. D., Churbanov, M. F., Bertrand, B., Hutin, L., … Sanquer, M. 99.992% 28Si CVD-grown epilayer on 300 mm substrates for large scale integration of silicon spin qubits. J Cryst Growth (2018).
  7. 7.
    Sun X, Gao K, Pang X, Sun Q, Li J (2018) Thermodynamic energy variation diagram to speculate preferred growth orientation of magnetron sputtered PbSe thin films on monocrystalline silicon substrates. Appl Surf Sci 452:1–10. CrossRefGoogle Scholar
  8. 8.
    Gotoh K, Cui M, Takahashi I, Kurokawa Y, Usami N (2017) Development of spin-coated copper iodide on silicon for use in hole-selective contacts. Energy Procedia 124:598–603. CrossRefGoogle Scholar
  9. 9.
    Alford, T. L., Tang, T., Thompson, D. C., Bhagat, S., & Mayer, J. W. Influence of microwave annealing on direct bonded silicon wafers. Thin Solid Films (2008).
  10. 10.
    Fung, T. H., Chan, C. E., Hallam, B. J., Payne, D. N. R., Abbott, M. D., & Wenham, S. R. (2017). Impact of annealing on the formation and mitigation of carrier-induced defects in multi-crystalline silicon. In Energy Procedia
  11. 11.
    Amanov A, Kwon HG, Pyun YS (2017) The possibility of reducing the reflectance and improving the tribological behavior of Si wafer by UNSM technique. Tribol Int 105:175–184. CrossRefGoogle Scholar
  12. 12.
    Shikhgasan R, Ţălu Ş, Dinara S, Sebastian S, Guseyn R (2015) Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution. Superlattice Microst 86:395–402. CrossRefGoogle Scholar
  13. 13.
    N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Ţălu, M. Pourreza, S. Ghasemi, Microstructure, morphology and electrochemical properties of co nanoflake water oxidation electrocatalyst at micro- and nanoscale. RSC Adv, 7(21) (2017) 12923–12930.
  14. 14.
    Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A, Ahmadirad M (2016) Gold nanoparticles embedded in carbon film: micromorphology analysis. J Ind Eng Chem 35:158–166. CrossRefGoogle Scholar
  15. 15.
    Dallaeva D, Ţălu Ş, Stach S, Škarvada P, Tomanek P, Grmela L (2014) AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl Surf Sci 312:81–86. CrossRefGoogle Scholar
  16. 16.
    S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering, Mater Sci Pol 33(1) (2015) 175–184.
  17. 17.
    Rachow T, Reber S, Janz S, Knapp M, Milenkovic N (2016) Degradation of silicon wafers at high temperatures for epitaxial deposition. Energy Science and Engineering 4(5):344–351. CrossRefGoogle Scholar
  18. 18.
    Rabus, M., Fiory, A. T., Ravindra, N. M., Frisella, P., Agarwal, A., Sorsch, T., … Mansfield, W. (2006). Rapid thermal processing of silicon wafers with emissivity patterns. J Electron Mater, 35(5), 877–891.
  19. 19.
    Yoo WS, Fukada T, Yokoyama I, Kang K, Takahashi N (2002) Thermal behavior of large-diameter silicon wafers during high-temperature rapid thermal processing in single wafer furnace. Japanese journal of applied physics. Part 1: Regular Papers and Short Notes and Review Papers 41(7 A):4442–4449. CrossRefGoogle Scholar
  20. 20.
    Doi T, Koguchi M (2016) Investigation of Si(001) stable surfaces in alternating current heating. Surf Sci 653:226–236. CrossRefGoogle Scholar
  21. 21.
    Gupta P, Kulkarni MS (2006) Simulation of slip during high-temperature annealing of silicon wafers in vertical furnaces. ECS Trans 3(October):211–223. CrossRefGoogle Scholar
  22. 22.
    Shiraki, H., Profiler, P., Kanda, T., Hourai, M., Tomokage, H., Spectroscopy, P., … Suzuki, T. (1974). Related content silicon wafer annealing effect in loop defect generation.Google Scholar
  23. 23.
    Suzuki, T. Effect of annealing a silicon wafer in argon with a very low oxygen partial pressure. J Appl Phys (2000).
  24. 24.
    Gräf D, Lambert U, Brohl M, Ehlert A, Wahlich R, Wagner P (1995) Improvement of Czochralski silicon wafers by high-temperature annealing. J Electrochem Soc 142(9):3189–3192. CrossRefGoogle Scholar
  25. 25.
    Elenkova D, Zaharieva J, Getsova M, Manolov I, Milanova M, Stach S, Ţălu Ş (2015) Morphology and optical properties of SiO2-based composite thin films with immobilized terbium(III) complex with a Biscoumarin derivative. Int J Polym Anal Charact 20(1):42–56. CrossRefGoogle Scholar
  26. 26.
    Ţălu Ş, Stach S, Mahajan A, Pathak D, Wagner T, Kumar A, Bedi RK (2014) Multifractal analysis of drop-casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates. Surf Interface Anal 46(6):393–398. CrossRefGoogle Scholar
  27. 27.
    A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, Micromorphology characterization of copper thin films by AFM and fractal analysis, J Mater Sci Mater Electron 26 (2015) 9630–9639.
  28. 28.
    Ş. Ţălu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, Surface morphology of titanium nitride thin films synthesised by DC reactive magnetron sputtering. Mater. Sci.- Poland, 33 (2015), 137–143.
  29. 29.
    Knápek A, Sobola D, Tománek P, Pokorná Z, Urbánek M (2017) Field emission from the surface of highly ordered pyrolytic graphite. Appl Surf Sci 395.
  30. 30.
    Ţălu Ş, Stach S, Zaharieva J, Milanova M, Todorovsky D, Giovanzana S (2014) Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) -Diketonates by fractal analysis. Int J Polym Anal Charact 19:404–421. CrossRefGoogle Scholar
  31. 31.
    Y. Reyes-Vidal, R. Suarez-Rojas, C. Ruiz, J. Torres, Ş. Ţălu, A. Méndez, G. Trejo, Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings. Appl Surf Sci 342 (2015), 34–41.
  32. 32.
    Sobola D, Ţălu Ş, Solaymani S, Grmela L (2017) Influence of scanning rate on quality of AFM image: study of surface statistical metrics. Microsc Res Tech 80:1328–1336. CrossRefPubMedGoogle Scholar
  33. 33.
    Ţălu Ş, Solaymani S, Bramowicz M, Kulesza S, Ghaderi A, Shahpouri S, Elahi SM (2016) Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J Mater Sci Mater Electron 27:9272–9277.
  34. 34.
    Yadav RP, Kumar M, Mittal AK, Pandey AC (2015) Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces. Chaos 25(8) 083115Google Scholar
  35. 35.
    Ţălu Ş, Bramowicz M, Kulesza S, Ghaderi A, Dalouji V, Solaymani S, Fathi Kenari M, Ghoranneviss M (2016) Fractal features and surface micromorphology of diamond nanocrystals. J Microsc 264:143–152. CrossRefPubMedGoogle Scholar
  36. 36.
    Stach S, Sapota W, Ţălu Ş, Ahmadpourian A, Luna C, Ghobadi N, Arman A, Ganji M (2017) 3D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J Mater Sci Mater Electron 28(2):2113–2122. CrossRefGoogle Scholar
  37. 37.
    Ţălu Ş, Stach S, Mendez A, Trejo G, Talu M (2013) Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings. J Electrochem Soc 161:D44–D47. CrossRefGoogle Scholar
  38. 38.
    Ţălu Ş, Yadav RP, Šik O, Sobola D, Dallaev R, Solaymani S, Man O (2018) How topographical surface parameters are correlated with CdTe monocrystal surface oxidation. Mater Sci Semicond Process.
  39. 39.
    Connor MW, Colmenares C (1996) X-ray photoelectron characterization of SiO2 aerogel. J Non-Cryst Solids 201:76–80. CrossRefGoogle Scholar
  40. 40.
    Suzuki T (2000) Effect of annealing a silicon wafer in argon with a very low oxygen partial pressure. J Appl Phys 88:6881. CrossRefGoogle Scholar
  41. 41.
    Bekkay T, Piyakis K, Diawara Y, Sacher E, Yelon A, Currie JF (1991) Band bending and Fermi level shifts in phosphorus-doped hydrogenated amorphous silicon studied by X-ray photoelectron spectroscopy. Surf Sci 258:190–196. CrossRefGoogle Scholar
  42. 42.
    Motamedi P, Cadien K (2014) XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl Surf Sci 315:104–109. CrossRefGoogle Scholar
  43. 43.
    Mountains Map® 7 Software (Digital Surf, Besançon, France). Available from: (last Accessed September 10th, 2018).
  44. 44.
    ISO 25178-2: 2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters Available from: (last Accessed September 10th, 2018).

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Communication, Physics DepartmentBrno University of TechnologyBrnoCzech Republic
  2. 2.Faculty of Computer Science and Materials Science, Institute of Informatics, Department of Biomedical Computer SystemsUniversity of SilesiaSosnowiecPoland
  3. 3.The Directorate of Research, Development and Innovation Management (DMCDI)The Technical University of Cluj-NapocaCluj-NapocaRomania
  4. 4.Centro de Química-ICUAP Benemérita Universidad Autónoma de PueblaPueblaMexico
  5. 5.Center of Research and Technological Development in Electrochemistry (CIDETEQ)QuerétaroMexico

Personalised recommendations