Enhancement of Electrochemical Capacitance of Silicon Nanowires Arrays (SiNWs) by Modification with Manganese Dioxide MnO2


Silicon nanowire arrays (SiNWs) were fabricated by one-step metal-assisted chemical etching process and modified with MnO2 nanoparticles by a chemical electroless method. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the MnO2-modified SiNWs. It was noted that the amount of deposited MnO2 increases with increasing deposition time. Moreover, it was found that the deposition of MnO2 on the SiNWs electrode surface leads to an increase of charge and discharge capacitive current and capacitance. Indeed, MnO2–modified SiNWs presents the largest areal capacitance of 21.296 mF/cm2 which is 14 times larger than that of SiNWs/Si (1.55 mF/cm2) and an energy density of 1.66375 mWh/cm2 for a scan rate of 10 mV/s. Therefore, MnO2@SiNWs/Si nanocomposite is a promising material for the micro-supercapacitor technology.

This is a preview of subscription content, log in to check access.


  1. 1.

    Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y (2010) Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett 10:1409–1413

    CAS  Article  Google Scholar 

  2. 2.

    Tao B, Zhang J, Miao F, Hui S, Wan L (2010) Preparation and electrochemistry of NiO/SiNW nanocomposite electrodes for electrochemical capacitors. Electrochim Acta 55:5258–5262

    CAS  Article  Google Scholar 

  3. 3.

    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    CAS  Article  Google Scholar 

  4. 4.

    Laik B, Eude L, Pereira-Ramos J-P, Cojocaru CS, Pribat D, Rouviere E (2008) Silicon nanowires as negative electrode for lithium-ion microbatteries. Electrochim Acta 53:5528–5532

    CAS  Article  Google Scholar 

  5. 5.

    Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    CAS  Article  Google Scholar 

  6. 6.

    Amdouni S, Coffinier Y, Szunerits S, Zaïbi MA, Oueslati M, Boukherroub R (2015) Catalytic activity of silicon nanowires decorated with silver and copper nanoparticles. Semicond Sci Technol 31:014011

    Article  Google Scholar 

  7. 7.

    Xu Y, Wang L, Jiang W, Wang H, Yao J, Guo Q, Yuan L, Chen H (2013) Silicon nanowire arrays–a new catalyst for the reduction of nitrobenzene derivatives. ChemCatChem 5:3788–3793

    CAS  Article  Google Scholar 

  8. 8.

    Gao W, Shao M, Yang L, Zhuo S, Ye S, Lee S-t (2012) Manganese dioxide modified silicon nanowires and their excellent catalysis in the decomposition of methylene blue. Appl Phys Lett 100:063104

    Article  Google Scholar 

  9. 9.

    Naama S, Hadjersi T, Menari H, Nezzal G, Ahmed LB, Lamrani S (2016) Enhancement of the tartrazine photodegradation by modification of silicon nanowires with metal nanoparticles. Mater Res Bull 76:317–326

    CAS  Article  Google Scholar 

  10. 10.

    Brahiti N, Hadjersi T, Amirouche S, Menari H, ElKechai O (2018) Photocatalytic degradation of cationic and anionic dyes in water using hydrogen-terminated silicon nanowires as catalyst. Int J Hydrog Energy 43:11411–11421

    CAS  Article  Google Scholar 

  11. 11.

    Lian S, Tsang CHA, Kang Z, Liu Y, Wong N, Lee S-T (2012) Photo-controlled redox of hydrogen-terminated silicon nanowire established by the reversible color alteration of methylene blue. Mater Res Bull 47:1119–1122

    CAS  Article  Google Scholar 

  12. 12.

    Ifires M, Hadjersi T, Chegroune R, Lamrani S, Fatsah M, Mebarki M, Manseri A (2018) One-step electrodeposition of superhydrophobic NiO-co (OH) 2 urchin-like structures on Si nanowires as photocatalyst for RhB degradation under visible light. J Alloys Compd

  13. 13.

    Qiao L, Shougee A, Albrecht T, Fobelets K (2016) Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid. Electrochim Acta 210:32–37

    CAS  Article  Google Scholar 

  14. 14.

    Dubal DP, Aradilla D, Bidan G, Gentile P, Schubert TJ, Wimberg J, Sadki S, Gomez-Romero P (2015) 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li-doped ionic liquid. Sci Rep 5:9771

    CAS  Article  Google Scholar 

  15. 15.

    Thissandier F, Le Comte A, Crosnier O, Gentile P, Bidan G, Hadji E, Brousse T, Sadki S (2012) Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications. Electrochem Commun 25:109–111

    CAS  Article  Google Scholar 

  16. 16.

    Moulai F, Fellahi O, Messaoudi B, Hadjersi T, Zerroual L (2018) Electrodeposition of nanostructured γ-MnO 2 film for photodegradation of Rhodamine B. Ionics:1–11

  17. 17.

    Moulai F, Cherchour N, Messaoudi B, Zerroual L (2017) Electrosynthesis and characterization of nanostructured MnO2 deposited on stainless steel electrode: a comparative study with commercial EMD. Ionics 23:453–460

    CAS  Article  Google Scholar 

  18. 18.

    Fellahi O, Das MR, Coffinier Y, Szunerits S, Hadjersi T, Maamache M, Boukherroub R (2011) Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation. Nanoscale 3:4662–4669

    CAS  Article  Google Scholar 

  19. 19.

    Megouda N, Hadjersi T, Szunerits S, Boukherroub R (2013) Electroless chemical etching of silicon in aqueous NH4F/AgNO3/HNO3 solution. Appl Surf Sci 284:894–899

    CAS  Article  Google Scholar 

  20. 20.

    Wan L, Gong W, Jiang K, Li H, Tao B, Zhang J (2008) Preparation and surface modification of silicon nanowires under normal conditions. Appl Surf Sci 254:4899–4907

    CAS  Article  Google Scholar 

  21. 21.

    Julien CM, Mauger A (2017) Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 7:396

    Article  Google Scholar 

  22. 22.

    Bélanger D, Brousse L, Long JW (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 17:49

    Google Scholar 

  23. 23.

    Aradilla D, Gao F, Lewes-Malandrakis G, Müller-Sebert W, Gaboriau D, Gentile P, Iliev B, Schubert T, Sadki S, Bidan G (2016) A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem Commun 63:34–38

    CAS  Article  Google Scholar 

  24. 24.

    Alper JP, Wang S, Rossi F, Salviati G, Yiu N, Carraro C, Maboudian R (2014) Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors. Nano Lett 14:1843–1847

    CAS  Article  Google Scholar 

  25. 25.

    Jacob GM, Zhitomirsky I (2008) Microstructure and properties of manganese dioxide films prepared by electrodeposition. Appl Surf Sci 254:6671–6676

    CAS  Article  Google Scholar 

  26. 26.

    Li J, Zhitomirsky I (2009) Cathodic electrophoretic deposition of manganese dioxide films. Colloids Surf A Physicochem Eng Asp 348:248–253

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support from General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS).

Author information



Corresponding author

Correspondence to Fatsah Moulai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moulai, F., Hadjersi, T., Ifires, M. et al. Enhancement of Electrochemical Capacitance of Silicon Nanowires Arrays (SiNWs) by Modification with Manganese Dioxide MnO2. Silicon 11, 2799–2810 (2019). https://doi.org/10.1007/s12633-019-0066-7

Download citation


  • Silicon nanowire
  • MnO2
  • Electroless deposition
  • Nanoparticles
  • Areal capacitance