Enhancing Mechanical Properties of Glass Ionomer Cements with Basalt Fibers

Abstract

With the aim to reinforce mechanical properties of glass ionomer cements (GICs), basalt fibers (BF, Ф13.3 μm) with 1 mm and 2 mm length were added into glass powders of commercial self-cure GIC Fuji IX with a series of mass fraction to prepare BF reinforced GICs. Fuji IX without BF was used as control. The influences of BF fibers length and mass fraction on flexural strength (FS), flexural modulus (FM), compressive strength (CS) and fracture toughness (FT) were investigated. The results showed that BF could reinforce mechanical properties of GIC significantly (p < 0.05), and the BF reinforced GIC with 7 wt.% (mass ratio in glass powders of GIC) of 2 mm fibers had the optimal mechanical properties in this research. Water sorption (WS), solubility (SL), and flexural properties after water aging of optimal BF reinforced GIC were then investigated and compared with control GIC. The FS of BF reinforced GIC decreased with the increasing of water aging time (p < 0.05), and became comparable with that of control GIC after 1 month of aging time (p > 0.05), while FMs of BF reinforced GIC and control GIC were comparable with each other (p > 0.05) and had no variation after water aging (p > 0.05). The WS of BF reinforced GIC was higher than that of control GIC (p < 0.05), but there was no significant difference in SL between these two GICs (p > 0.05). In conclusion, BF could be used to reinforce GIC, but the weak interaction between fibers and cement matrix would influence its long-time serving properties, thus further study concerned about increasing interaction between fibers and cement matrix should be taken.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fonseca RB, Branco CA, Quagliatto PS, Gonçalves LDS, Soares CJ, Carlo HL, Correr-Sobrinho L (2010) Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements. J Appl Oral Sci 18(6):577–584

    CAS  Article  Google Scholar 

  2. 2.

    Garoushi S, Vallittu P, Lassila L (2017) Hollow glass fibers in reinforcing glass ionomer cements. Dent Mater 33(2):e86–e93

    CAS  Article  Google Scholar 

  3. 3.

    Sayyedan FS, Fathi MH, Edris H, Doostmohammadi A, Mortazavi V, Hanifi A (2014) Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceram Int 40(7):10743–10748

    CAS  Article  Google Scholar 

  4. 4.

    Moshaverinia A, Ansari S, Roohpour N, Reshad M, Schricker SR, Chee WW (2011) Effects of N-vinylcaprolactam containing polyelectrolytes on hardness, fluoride release and water sorption of conventional glass ionomers. J Prosthet Dent 105(5):323–331

    CAS  Article  Google Scholar 

  5. 5.

    Xie D, Brantley WA, Culbertson BM, Wang G (2000) Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 16(2):129–138

    CAS  Article  Google Scholar 

  6. 6.

    Munhoz T, Karpukhina N, Hill RG, Law RV (2010) Setting of commercial glass ionomer cement Fuji IX by 27Al and 19F MAS-NMR. J Dent 38(4):325–330

    CAS  Article  Google Scholar 

  7. 7.

    Yamazaki T, Brantley W, Culbertson B, Seghi R, Schricker S (2005) The measure of wear in N-vinyl pyrrolidinone (NVP) modifed glass-ionomer cements. Polym Adv Technol 16(2–3):113–116

    CAS  Article  Google Scholar 

  8. 8.

    Elsaka SE, Hamouda IM, Swain MV (2011) Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent 39(9):589–598

    CAS  Article  Google Scholar 

  9. 9.

    Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda R, Nakajima H (2014) Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells. In Vivo 28(5):895–907

    CAS  PubMed  Google Scholar 

  10. 10.

    Petri DFS, Donegá J, Benassi AM, Bocangel JAJS (2007) Preliminary study on chitosan modified glass ionomer restoratives. Dent Mater 23(8):1004–1010

    CAS  Article  Google Scholar 

  11. 11.

    Kumar RS, Ravikumar N, Kavitha S, Mahalaxmi S, Jayasree R, Kumar TSS, Haneesh M (2017) Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release. Int J Biol Macromol 104:1860–1865

    Article  Google Scholar 

  12. 12.

    Silva RM, Pereira FV, Mota FAP, Watanabe E, Soares SMCS, Santos MH (2016) Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Mater Sci Eng C 58:389–395

    CAS  Article  Google Scholar 

  13. 13.

    Alatawi RAS, Elsayed NH, Mohamed WS (2018) Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2018.01.010

  14. 14.

    Hammouda IM (2009) Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J Mech Behav Biomed Mater 2(1):73–81

    Article  Google Scholar 

  15. 15.

    Garoushi SK, He J, Vallittu PK, Lassila LV (2018) Effect of discontinuous glass fibers on mechanical properties of glass ionomer cement. Acta Biomaterialia Odontologica Scandinavica 4(1):72–80

    CAS  Article  Google Scholar 

  16. 16.

    Deák T, Czigány T (2009) Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J 79(7):645–651

    Article  Google Scholar 

  17. 17.

    Ross A (2006) Basalt fibers: alternative to glass? Compos Technol 12(4)

  18. 18.

    Iorio M, Santarelli ML, González-Gaitano G, González-Benito J (2018) Surface modification and characterization of basalt fibers as potential reinforcement of concretes. Appl Surf Sci 427:1248–1256

    CAS  Article  Google Scholar 

  19. 19.

    Manikandan V, Jappes JTW, Kumar SMS, Amuthakkannan P (2012) Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos Part B 43(2):812–818

    CAS  Article  Google Scholar 

  20. 20.

    Dhand V, Mittal G, Rhee KY, Park SJ, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos Part B 73:166–180

    CAS  Article  Google Scholar 

  21. 21.

    Novitskii AG (2004) High-temperature heat-insulating materials based on fibers from basalt-type rock materials. Refract Ind Ceram 45(2):144–146

    CAS  Article  Google Scholar 

  22. 22.

    Chen X, Zhang Y, Huo H, Wu Z (2018) Study of high tensile strength of natural continuous basalt fibers. J Nat Fibers:1–9

  23. 23.

    Wei B, Cao H, Song S (2010) Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater Des 31(9):4244–4250

    CAS  Article  Google Scholar 

  24. 24.

    Militký J, Kovačič V, Rubnerova J (2002) Influence of thermal treatment on tensile failure of basalt fibers. Eng Fract Mech 69(9):1025–1033

    Article  Google Scholar 

  25. 25.

    Deák T, Czigány T, Maršálková M, Militký J (2010) Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polym Eng Sci 50(12):2448–2456

    Article  Google Scholar 

  26. 26.

    Bashtannik PI, Kabak AI, Yakovchuk YY (2003) The effect of adhesion interaction on the mechanical properties of thermoplastic basalt plastics. Mech Compos Mater 39(1):85–88

    Article  Google Scholar 

  27. 27.

    Botev M, Betchev H, Bikiaris D, Panayiotou C (1999) Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J Appl Polym Sci 74(3):523–531

    CAS  Article  Google Scholar 

  28. 28.

    Czigány T (2005) Basalt fiber reinforced hybrid polymer composites//materials science forum. Trans Tech Publ 473:59–66

    Google Scholar 

  29. 29.

    Garoushi S, Säilynoia E, Vallittu PK, Lassila LVJ (2013) Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater:835–841

  30. 30.

    Ghasemzadehbarvarz M, Duchesne C, Rodrigue D (2015) Mechanical, water sorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. J Compos Mater 49:3781–3798

    CAS  Article  Google Scholar 

  31. 31.

    Sharafeddin F, Tondari A, Alavi AA (2013) The effect of adding glass and polyethylene fibers on flexural strength of three types of glass-Ionomer cements. Res J Biologic Sci 8:66–70

    Google Scholar 

  32. 32.

    Li Q, Tang C, Liu F, He J (2018) The physiochemical properties of dental resin composites reinforced with milled E-glass fibers. Silicon 10(5):1999–2007

    CAS  Article  Google Scholar 

  33. 33.

    Xie D, Brantley WA, Culbertson BM, Wang G (2000) Mechanical properties and microstructure of glass-ionomer cements. Dent Mater 16:129–138

    CAS  Article  Google Scholar 

  34. 34.

    Dowling AH, Fleming G, McGinley EL, Addison O (2012) Improving the standard of the standard for glass ionomer: an alternative to the compressive fracture strength test for consideration. J Dent 40:189–201

    CAS  Article  Google Scholar 

  35. 35.

    Garoushi S, Vallittu PK, Lassila L (2011) Fracture toughness, compressive strength and load-bearing capacity of short glass fibre-reinforced composite resin. Chin J Dental Res 14:15–24

    CAS  Google Scholar 

  36. 36.

    Dyer SR, Lassila LV, Jokinen M, Vallittu PK (2004) Effect of fibre position and orientation on fracture load of fibre-reinforced composite. Dent Mater 20:947–955

    CAS  Article  Google Scholar 

  37. 37.

    Algera TJ, Kleverlaan CJ, Prahl-Andersen B, Feilzer AJ (2006) The influence of environmental conditions on the material properties of setting glass-ionomer cements. Dent Mater 22(9):852–856

    CAS  Article  Google Scholar 

  38. 38.

    Culbertson BM (2001) Glass-ionomer dental restoratives. Prog Polym Sci 26(4):577–604

    CAS  Article  Google Scholar 

  39. 39.

    Moshaverinia A, Roohpour N, Rehman IU (2009) Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical properties. Acta Biomater 5(1):498–507

    CAS  Article  Google Scholar 

  40. 40.

    Miyazaki M, Moore BK, Onose H (1996) Effect of surface coatings on flexural properties of glass ionomers. Eur J Oral Sci 104(5–6):600–604

    CAS  Article  Google Scholar 

  41. 41.

    Miettinen VM, Vallittu PK (1997) Water sorption and solubility of glass fiber reinforced denture polymethyl methacrylate resin. J Prosthet Dent 77:531–534

    CAS  Article  Google Scholar 

  42. 42.

    Miettinen VM, Narva K, Vallittu PK (1999) Water sorption, solubility and post-curing of glass fibre reinforced polymers. Biomaterials 20:1187–1194

    CAS  Article  Google Scholar 

  43. 43.

    Lee SO, Rhee KY, Park SJ (2015) Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites. J Ind Eng Chem 32:153–156

    CAS  Article  Google Scholar 

  44. 44.

    Kobayashi M, Kon M, Miyai K, Asaoka K (2000) Strengthening of glass-ionomer cement by compounding short fibres with CaO-P2O5-SiO2-Al2O3 glass. Biomaterials 21(20):2051–2058

    CAS  Article  Google Scholar 

  45. 45.

    Matkó S, Anna P, Marosi G, Szep A, Keszei S, Czigany T, Pölöskei K (2003) Use of reactive surfactants in basalt fiber reinforced polypropylene composites//macromolecular symposia. Weinheim: WILEY-VCH Verlag 202(1): 255–268

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation (No.81970974) of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingwei He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Garoushi, S.K., Liu, F. et al. Enhancing Mechanical Properties of Glass Ionomer Cements with Basalt Fibers. Silicon 12, 1975–1983 (2020). https://doi.org/10.1007/s12633-019-00312-4

Download citation

Keywords

  • Glass ionomer cements
  • Basalt fibers
  • Mechanical properties
  • Reinforcement
  • Water aging