Skip to main content
Log in

10 nm TriGate High k Underlap FinFETs: Scaling Effects and Analog Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Nano scale devices with improved performance than the conventional CMOS devices is of great need in recent days. The paper investigates the performance of 10 nm Trigate FinFET structure with high k dielectric spacer on either side of the channel in the underlap region. The proposed structure increases the On-Off ratio (ION/ IOFF) of drain current by order of 106 and also improves the subthreshold swing (SS). Further, it enhances the transconductance (gm) at the low gate voltage, raises the output conductance (gd) and intrinsic gain (gm/gd) proving that the device provides efficient analog performance suitable for RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narendar V et al (2018) Surface potential modeling of graded channel Gate stack(GCGS) high k Dielectric Dual Material Double Gate (DMDG) MOSFET and analog/RF performance study. Silicon 10:2865–2875

    Article  CAS  Google Scholar 

  2. Saha R, Bhowmick B, Baishya S (2018) GaAs SOI FinFET: impact of gate dielectric on electrical parameters and application as digital inverter. Int J Nanopart 10(1/2):3

    Article  Google Scholar 

  3. Saha R, Brinda B, Baishya S (2017) Si and Ge step- FinFETs: work function variability optimization and electrical parameters. Superlattices and Microstructures 107:5–16

    Article  CAS  Google Scholar 

  4. Pradhan KP, Sahu KP (2016) Benefits of asymmetric underlap dual-k spacer hybrid fin field-effect transistor over bulk fin field-effect transistor. IET Circuits Devices Syst 10(5):441–447

    Article  Google Scholar 

  5. Sachid AB, Manoj S et al (2008) Gate fringed-induced barrier lowering in underlap FinFET structures and optimization. IEEE Electron Device Lett 29(1):128–130

    Article  CAS  Google Scholar 

  6. Trivedi V, Fossum JG, Chowdhury MM (2005) Nanoscale FinFETs with gate-source/drain underlap. IEEE Trans Electron Devices 52(1):56–62

    Google Scholar 

  7. Saha R, Bhowmick B, Baishya S (2018) Effect of gate dielectric on electrical parameters due to metal gate WFV in n-channel Si step FinFET. Micro Nano Lett 7:1007–1010

    Article  Google Scholar 

  8. Sharma RK, Dimitriadis CA, Bucher M (2016) A comprehensive analysis of nanoscale singl-and multigate MOSFETs. Microelectron J 52:66–72

    Article  Google Scholar 

  9. Pradhan KP, Mohapatra SK, Sahu PK (2015) Impact of channel and metal gate work function on GS-DG MOSFET: a linearity analysis. ECS J Solid State Sci Technol 9(9):393–397 (ECS)

    Article  Google Scholar 

  10. Sahu PK, Mohapatra SK, Pradhan KP (2014) Impact of down-scaling on analog/RF performance of sub-100nm GS-DG MOSFET. J Microelectron Electron Compon Mater 44(2):119–125 (MIDEM Society)

    Google Scholar 

  11. Sahu PK, Mohapatra SK, Pradhan KP (2013) A study of SCEs and analog FOMs in GS-DG-MOSFET with lateral asymmetric channel doping. J Semiconduct Technol Sci 13(6):647–654 (IEIE, Korea)

    Article  Google Scholar 

  12. Mohapatra SK, Pradhan KP, Artola L, Sahu PK (2015) Estimation of analog/RF FOMs using device design engineering in GS-DG-MOSFET. Mater Sci Semicond Process 31:455–462 (Elsevier)

    Article  CAS  Google Scholar 

  13. Pradhan KP, Priyanka M, Sahu PK (2016) Exploration of symmetric high –k spacer (SHS) hybrid FinFET for high performance application. Superlattice Microst 90:191–197

    Article  CAS  Google Scholar 

  14. Park JH, Seok KH, Kim HY, Chae HJ, Lee SK, Joo SK, Es-Sakhi A, Chowdhury M (2015) A novel design of quasi-lightly doped drain poly-si thin film transistors for suppression of kin and gate-induced drain leakage current. IEEE Electron Device Lett 36(4):351–353

    Article  CAS  Google Scholar 

  15. Tripati S, Narendar V (2015) A three- dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattice Microst 83:476–487

    Article  Google Scholar 

  16. Es-Sakhi A, Chowdhury M (2017) Analysis of device capacitance and subthreshold behavior of tri-gate SOI FinFET. Microelectron J 62:30–37

    Article  CAS  Google Scholar 

  17. Trivedi N et al (2016) Analytical modeling simulation and characterization of short channel Junctionless Accumulation mode Surrounding Gate (JLAMSG) MOSFET for improved analog/RF performance. Superlattice Microst 100:1263–1275

    Article  CAS  Google Scholar 

  18. Fasarakis N et al (2012) Compact model of drain current in short- channel triple-gate FinFETs. IEEE Trans Electron Devices 59(7):1891–1898

    Article  Google Scholar 

  19. Kranti A, Armstrong GA (2007) Comparative analysis of nanoscale MOS device architectures for RF applications. Semicond Sci Technol 22:481

    Article  CAS  Google Scholar 

  20. Raskin JP, Chung TM, Kilchytska V, Lederer D, Flandre D (2006) Analog/RF performance of multiple gate SOI devices: wideband simulations and characterization. IEEE Trans Electron Devices 53:1088

    Article  CAS  Google Scholar 

  21. Borremans J et al (2008) Perspective of RF design in future planar and FinFET CMOS. 2008 IEEE radio frequency integrated circuits symposium, Atlanta, GA

  22. Bhattacharya D, Jha NK (2014) FinFETs: from devices to architectures. Adv Electron 2014:1–21

    Article  Google Scholar 

  23. Sharma D, Vishvakarma SK (2015) Analyses of DC and analog/RF performances for short channel quadruple-gate gateall-around MOSFET. Microelectron J 46:731

    Article  CAS  Google Scholar 

  24. Kumar A (2016) Analog and RF performance of a multigate FinFET at nano scale. Superlattice Microst 100:1

    Article  Google Scholar 

  25. Orouji AA, Rahimian M (2012) Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr Appl Phys 12(5):1366–1371

    Article  Google Scholar 

  26. Nawaz SM, Dutta S, Mallik A (2015) Comparison of gate- metal work function variability between Ge and Si p-channel FinFETs. IEEE Trans Electron Devices 62(12):3951–3956

    Article  CAS  Google Scholar 

  27. Bijo Joseph H, Singh SK, Hariharan RM, Priya PA, Kumar NM, Thiruvadigal DJ (2018) Hetero structure PNPN tunnel FET: analysis of scaling effects on counter doping. Appl Surf Sci 449:823–828

    Article  Google Scholar 

  28. Yu C-H, Han M-H, Cheng H-W, Su Z-C, Li Y, Watanabe H (2010) Statistical simulation of metal-gate work-function fluctuation in high-κ/metal-gate devices. In Proceedings of SISPAD 2010, pp 153–156

Download references

Acknowledgements

The authors gratefully acknowledge the support by Centre for Material Science and Nano devices, Dept of Physics & Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Aruna Priya.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bha, J.K.K., Priya, P.A., Joseph, H.B. et al. 10 nm TriGate High k Underlap FinFETs: Scaling Effects and Analog Performance. Silicon 12, 2111–2119 (2020). https://doi.org/10.1007/s12633-019-00299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00299-y

Keywords

Navigation