Skip to main content
Log in

Analytical Model of Double Gate Stacked Oxide Junctionless Transistor Considering Source/Drain Depletion Effects for CMOS Low Power Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper proposes a 2-D analytical model developed for Double Gate Junctionless Transistor with a SiO2/HfO2 stacked oxide structure. The model is solved by Poisson’s equation using the variable separation method. The proposed model gives analytical expressions for electrostatic potential distribution, threshold voltage and drain current with the effects of depletion regions at source/drain side. Furthermore, the potential and drain current models are used to evaluate the Short Channel Effects (SCEs) of the proposed device. The electrical characteristics and SCEs are analyzed by different possible definitions of channel length, silicon thickness, equivalent oxide thickness, and depletion length variations. The developed model results are validated through comparison with Sentarus TCAD simulator results. In addition, the proposed device is also studied for the digital circuit performance of CMOS inverter circuit by the voltage transfer characteristics, transient analysis, and AC small signal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnani E, Gnudi A, Reggiani S, Baccarani G (2011) Theory of the junctionless nanowire FET. IEEE Trans Electron Devices 58:2903–2910. https://doi.org/10.1109/TED.2011.2159608

    Article  Google Scholar 

  2. Holtij T, Schwarz M, Kloes A, Iniguez B (2013) Threshold voltage, and 2D potential modeling within short-channel junctionless DG MOSFETs in subthreshold region. Solid State Electron 90:107–115. https://doi.org/10.1016/j.sse.2013.02.044

    Article  CAS  Google Scholar 

  3. Gnudi A, Reggiani S, Gnani E, Baccarani G (2013) Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans Electron Devices 60:1342–1348. https://doi.org/10.1109/TED.2013.2247765

    Article  Google Scholar 

  4. Lee CW, Borne A, Ferain I, Afzalian A, Yan R, Dehdashti Akhavan N et al (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE Trans Electron Devices 57:620–625. https://doi.org/10.1109/TED.2009.2039093

    Article  CAS  Google Scholar 

  5. Colinge JP, Kranti A, Yan R, Lee CW, Ferain I, Yu R et al (2011) Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron 65–66:33–37. https://doi.org/10.1016/j.sse.2011.06.004

    Article  CAS  Google Scholar 

  6. Chandra Deva Sarma K, Sharma S (2015) An approach for complete 2-D analytical potential modelling of fully depleted symmetric double gate junction less transistor. J Comput Electron 14:717–725. https://doi.org/10.1007/s10825-015-0700-6

    Article  CAS  Google Scholar 

  7. Woo JH, Choi JM, Choi YK (2013) Analytical threshold voltage model of junctionless double-gate MOSFETs with localized charges. IEEE Trans Electron Devices 60:2951–2955. https://doi.org/10.1109/TED.2013.2273223

    Article  Google Scholar 

  8. Chaudhary T, Khanna G. A 2D potential based threshold voltage model analysis and comparison of Junctionless symmetric double gate vertical slit field effect transistor. IETE J Res 2017;0:1–10. https://doi.org/10.1080/03772063.2017.1292154

  9. Bari S, De D, Sarkar A (2015) Effect of gate engineering in JLSRG MOSFET to suppress SCEs: an analytical study. Phys E Low-Dimensional Syst Nanostruct 67:143–151. https://doi.org/10.1016/j.physe.2014.11.013

    Article  CAS  Google Scholar 

  10. Charles Pravin J, Nirmal D, Prajoon P, Anuja MM (2016) A new drain current model for a dual metal Junctionless transistor for enhanced digital circuit performance. IEEE Trans Electron Devices 63:3782–3789. https://doi.org/10.1109/TED.2016.2591982

    Article  Google Scholar 

  11. Wang Y, Shan C, Dou Z, Wang LG, Cao F (2015) Improved performance of nanoscale junctionless transistor based on gate engineering approach. Microelectron Reliab 55:318–325. https://doi.org/10.1016/j.microrel.2014.11.009

    Article  CAS  Google Scholar 

  12. Raad BR, Sharma D, Kondekar P, Nigam K, Yadav DS (2016) Drain work function engineered doping-less charge plasma TFET for Ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans Electron Devices 63:3950–3957. https://doi.org/10.1109/TED.2016.2600621

    Article  CAS  Google Scholar 

  13. Chau R, Datta S, Doczy M, Doyle B, Kavalieros J, Metz M (2004) High-κ/metal-gate stack and its MOSFET characteristics. IEEE Electron Device Letters. https://doi.org/10.1109/LED.2004.828570

  14. Ajayan J, Nirmal D, Prajoon P, Charles PJ (2017) Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications. AEU Int J Electron Commun 79:151–157. https://doi.org/10.1016/J.AEUE.2017.06.004

    Article  Google Scholar 

  15. Sharma A, Jain A, Pratap Y, Gupta RS (2016) Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron 123:26–32. https://doi.org/10.1016/j.sse.2016.05.016

    Article  CAS  Google Scholar 

  16. Dhiman G, Pourush R, Ghosh PK (2018) Performance analysis of high- κ material gate stack based Nanoscale junction less double gate MOSFET. Mater Focus 7:259–267. https://doi.org/10.1166/mat.2018.1505

    Article  CAS  Google Scholar 

  17. Wang P, Zhuang Y, Li C, Li Y, Jiang Z (2014) Subthreshold behavior models for nanoscale junctionless double-gate MOSFETs with dual- material gate stack Subthreshold behavior models for nanoscale junctionless double-gate MOSFETs with dual-material gate stack. Jpn J Appl Phys084201:084201-(1-7)

  18. Xiao Y, Lin X, Lou H, Zhang B, Zhang L, Chan M (2016) A short channel double-gate junctionless transistor model including the dynamic channel boundary effect. IEEE Trans Electron Devices 63:4661–4667. https://doi.org/10.1109/TED.2016.2620240

    Article  Google Scholar 

  19. Kumari V, Kumar A, Saxena M, Gupta M (2018) Study of Gaussian doped double gate JunctionLess (GD-DG-JL) transistor including source drain depletion length: model for sub-threshold behavior. Superlattice Microst 113:57–70. https://doi.org/10.1016/j.spmi.2017.09.049

    Article  CAS  Google Scholar 

  20. Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S (2016) Analytical modeling of channel potential and threshold voltage of double-gate Junctionless FETs with a vertical Gaussian-like doping profile. IEEE Trans Electron Devices 63:2299–2305. https://doi.org/10.1109/TED.2016.2556227

    Article  CAS  Google Scholar 

  21. Sahu C, Singh J (2014) Charge-plasma based process variation immune junctionless transistor. IEEE Electron Device Lett 35:411–413. https://doi.org/10.1109/LED.2013.2297451

    Article  CAS  Google Scholar 

  22. Sahu C, Singh J (2015) Potential Benefits and Sensitivity Analysis of Dopingless Transistor for Low Power Applications. https://doi.org/10.1109/TED.2015.2389900

  23. Shan C, Wang Y, Bao MT (2016) A charge-plasma-based transistor with induced Graded Channel for enhanced analog performance. IEEE Trans Electron Devices 63:2275–2281. https://doi.org/10.1109/TED.2016.2549554

    Article  CAS  Google Scholar 

  24. Kumar A, Gupta A, Rai S (2018) Reduction of self-heating effect using selective buried oxide (SELBOX) charge plasma based junctionless transistor. AEU Int J Electron Commun 95:162–169. https://doi.org/10.1016/J.AEUE.2018.08.023

    Article  Google Scholar 

  25. Zareiee M (2019) A new architecture of the dual gate transistor for the analog and digital applications. AEU Int J Electron Commun 100:114–118. https://doi.org/10.1016/J.AEUE.2019.01.012

    Article  Google Scholar 

  26. Jaiswal N, Kranti A (2018) A model for gate-Underlap-dependent Short-Channel effects in Junctionless MOSFET. IEEE Trans Electron Devices 65:881–887. https://doi.org/10.1109/TED.2018.2796602

    Article  CAS  Google Scholar 

  27. Jit S, Goel E, Kumar S, Gola D, Singh B, Singh K (2017) 2-D analytical threshold voltage model for dielectric pocket double-gate Junctionless FETs by considering source/drain depletion effect. IEEE Trans Electron Devices 64:901–908. https://doi.org/10.1109/ted.2016.2646460

    Article  CAS  Google Scholar 

  28. Djeffal F, Ferhati H, Bentrcia T (2016) Improved analog and RF performances of gate-all-around junctionless MOSFET with drain and source extensions. Superlattice Microst 90:132–140. https://doi.org/10.1016/j.spmi.2015.09.041

    Article  CAS  Google Scholar 

  29. Tayal S, Nandi A (2017) Study of 6T SRAM cell using high-K gate dielectric based junctionless silicon nanotube FET. Superlattice Microst 112:143–150. https://doi.org/10.1016/j.spmi.2017.08.061

    Article  CAS  Google Scholar 

  30. Baidya A, Baishya S, Lenka TR (2017) Impact of thin high-k dielectrics and gate metals on RF characteristics of 3D double gate junctionless transistor. Mater Sci Semicond Process 71:413–420. https://doi.org/10.1016/J.MSSP.2017.08.031

    Article  CAS  Google Scholar 

  31. Charles Pravin J, Nirmal D, Prajoon P, Ajayan J (2016) Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power applications. Phys E Low-Dimensional Syst Nanostruct 83:95–100. https://doi.org/10.1016/j.physe.2016.04.017

    Article  CAS  Google Scholar 

  32. Ajay NR, Saxena M, Gupta M (2017) Modeling of gate underlap junctionless double gate MOSFET as bio-sensor. Mater Sci Semicond Process 71:240–251. https://doi.org/10.1016/J.MSSP.2017.08.008

    Article  CAS  Google Scholar 

  33. Sentarus Device User Guide. [online]. Available: http://www.synopsys.com

  34. Lin ZM, Lin HC, Liu KM, Huang TY (2012) Analytical model of subthreshold current and threshold voltage for fully depleted double-gated junctionless transistor. Jpn J Appl Phys 51. https://doi.org/10.1143/JJAP.51.02BC14

Download references

Acknowledgments

The author would like to thank all the members of VLSI Laboratory, Dept. of ECE, Thiagarajar College of Engineering, Madurai for their useful advice and suggestions. This research is supported by University Grants Commission, India under the scheme of National Fellowship for OBC (Award letter No: F./2016­17/NFO­2015­17­OBC­TAM­28886 / (SA­III/Website), February, 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Balamurugan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, S., Balamurugan, N.B. & Nirmal, D. Analytical Model of Double Gate Stacked Oxide Junctionless Transistor Considering Source/Drain Depletion Effects for CMOS Low Power Applications. Silicon 12, 2053–2063 (2020). https://doi.org/10.1007/s12633-019-00280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00280-9

Keywords

Navigation