Frequency and Voltage Dependence of the Dielectric Properties of Ni/SiO2/P-Si (MOS) Structure

Abstract

The frequency (10 - 107 Hz), temperature (303-363 K) or /and bias voltage (−2 to 2 V) dependence of the dielectric properties of Ni/SiO2/p-Si (MOS), have been investigated using the broadband dielectric spectrometer (BDS). Molecular structure and microstructure have been characterized using X - ray diffraction (XRD) and scanning electron microscope (SEM), respectively. From the experimental results, the capacitance–frequency (C-f) characteristics for MOS structure described as a series capacitance (Cs) in the oxide layer (SiO2) and a depletion layer in the semiconductor (p-Si). Interestingly, the capacitance over the whole frequency range for all temperatures are hardly distinguished particularly in the accumulation region, exploring enhancements of the electrical performance for MOS structure. Value of the flat band voltage (VFB) separating the accumulation and depletion regions was determinate at −0.5 V. Furthermore, thickness of the interfacial layer (SiO2) found to be ~580 Å. Both C and ε' found to be strongly temperature and frequency dependent particularly at high temperatures and low frequencies due to creation of an inhomogeneous layer at the SiO2/p-Si interface, exploring Maxwell-Wagner or interfacial polarization. Variation of ε' and ε'' with frequency revealed to the existence of surface states or traps (Nss) located at interfacial layer (SiO2), dipole or/and surface polarization. The average conductivity value of MOS structure found to be 1.2 × 10−7 S/cm, exploring semiconducting feature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Simon MS, Kwok KN (2007) Physics of semiconductor devices. John Wiley & Sons, New York

    Google Scholar 

  2. 2.

    Seo YJ, Kim KC, Kim TG, Sung YM, Cho HY, Joo MS (2008) Analysis of electronic memory traps in the oxide-nitride-oxide structure of a polysilicon-oxide-nitride-oxide-semiconductor flash memory. Appl Phys Lett 92:132104

    Google Scholar 

  3. 3.

    Har-Lavan R, Ron I, Thieblemont F, Cahen D (2009) Toward metal-organic insulator-semiconductor solar cells, based on molecular monolayer self-assembly on n-Si. Appl Phys Lett 94:043308

    Google Scholar 

  4. 4.

    Lin CH, Liu CW (2010) Metal-insulator-semiconductor photodetectors. Sensors 10:8797–8826

    CAS  PubMed  Google Scholar 

  5. 5.

    Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Ersöz G, Orak İ, Altındal Ş, Akbari B, Akbari H (2017) Electric and dielectric properties of au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10–200 kHz. J Electron Mater 46:4276–4286

    CAS  Google Scholar 

  6. 6.

    Nicollian EH, Brews J.R (1982) MOS physics and technology, John Wiley and Sons, New York

  7. 7.

    Chattopadhyay P, RayChaudhuri B (1993). Solid-State Elect 36:605–610

    CAS  Google Scholar 

  8. 8.

    Büyükbaş Uluşan A, Tataroğlu A (2018) Frequency–dependent dielectric parameters of au/TiO2/nSi (MIS) structure. Silicon 10(5):2071–2077

    Google Scholar 

  9. 9.

    Acar FZ, Buyukbas-Ulusan A, Tataroglu A (2018) Analysis of interface states in au/ZnO/p-InP (MOS) structure. J Mater Sci Mater Electron 29:12553–12560

    CAS  Google Scholar 

  10. 10.

    Lin CH, Yeh WT, Chan CH, Lin CC (2012) Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes, Nanoscale res. Lett 7:343

    Google Scholar 

  11. 11.

    Afsal M, Wang CY, Chu LW, Ouyang H, Chen LJ (2012) Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. J Mater Chem 22:8420–8425

    CAS  Google Scholar 

  12. 12.

    Malik A, Grimalsky V, Jacome AT, Durini D (2004) Theoretical modeling and experimental investigation of MIS radiation sensor with giant internal signal amplification, Sens. Actuators A Phys 114:319–326

    CAS  Google Scholar 

  13. 13.

    Gomila G (1999) Effects of interface states on the non-stationary transport properties of Schottky contacts and metal-insulator-semiconductor tunnel diodes. J Phys D Appl Phys 32:64

    CAS  Google Scholar 

  14. 14.

    Hudait KM, Krupanidhi SB (2000) Effects of thin oxide in metal-semiconductor and metal- insulator- semiconductor epi-GaAs Schottky diodes. Solid State Electron 44:1089–1097

    CAS  Google Scholar 

  15. 15.

    Bayindir M, Sorin F, Abouraddy AF, Viens J, Hart SD, Joannopoulos JD (2004) Metal-insulator-semiconductor optoelectronic fibres. Nature 431:826–829

    CAS  PubMed  Google Scholar 

  16. 16.

    Saglam M, Ayyildiz E, Gümüs A, Türüt A, Efeoglu H, Tüzemen S (1996) Series resistance calculation for the metal-insulator-semiconductor schottky barrier diodes. Appl. Phys A 62:269–273

    Google Scholar 

  17. 17.

    Kim H, Hong S-H, Chang Park Y, Lee J, Jeon C-H, Kim J (2014) Rapid thermal-treated transparent electrode for photodiode applications. Mater Lett 115:45–48

    CAS  Google Scholar 

  18. 18.

    Asghar M, Mahmood K, Faisal M, Hasan MA (2013) Electrical characterization of au/ZnO/Si Schottky contact J. Physics, Conference Series 439:012030

    Google Scholar 

  19. 19.

    Asar YS, Asar T, Altındal Ş, Özçelik S (2015) Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO2/p-GaAs(110) MIS structures. Philos Mag 95:2885–2898

    Google Scholar 

  20. 20.

    Bilkan Ç, Altındal Ş, Azizian-Kalandaragh Y (2017) Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys B Condens Matter 515:28–33

    CAS  Google Scholar 

  21. 21.

    Nikravan A, Badali Y, Altındal Ş, Uslu I, Orak I (2017) On the frequency and voltage-dependent profiles of the surface states and series resistance of au/ZnO/n-Si structures in a wide range of frequency and voltage. J Electron Mater 46:5728–5736

    CAS  Google Scholar 

  22. 22.

    Chand S, Kumar J (1996) Current transport in PdzSi/n-Si(l00) Schottky barrier diodes at low temperatures. Appl Phys A Mater Sci Process 63:171–178

    Google Scholar 

  23. 23.

    Ashery A, Farag AAM, Mahani R (2010) Structural, electrical and magnetic characterizations of Ni/cu/p-Si Schottky diodes prepared by liquid phase epitaxy. Microelectron Eng 87:2218–2224

    CAS  Google Scholar 

  24. 24.

    Thron AM, Greene PK, Liu K, Van Benthem K (2012) Structural changes suring the reaction of Ni thin films with (100) silicon substrates. Acta Mater 60:2668–2678

    CAS  Google Scholar 

  25. 25.

    Lee P-H, Chang C-C (2007) Spectroscopic characterization of Ni films on sub-10-nm silica layers: thermal metamorphosis and chemical bonding. Surf Sci 601:362–375

    CAS  Google Scholar 

  26. 26.

    Jain VV (2007) Microstructure and properties of copper thin films on silicon substrates MSc. A&M University, Texas

    Google Scholar 

  27. 27.

    Chelkowski A (1980) Dielectric physics. Elsevier, Amsterdam

    Google Scholar 

  28. 28.

    Popescu M, Bunget I (1984). Physics of Solid Dielectrics

  29. 29.

    Razouk R, Deal BJ (1979) Dependence of Interface state density on silicon thermal oxidation process variables. Electrochem Soc 126:1573 Elsevier, Amsterdam, pp.206-245, 82-291

    CAS  Google Scholar 

  30. 30.

    Bentarzi H (2011) Transport in metal-oxide-semiconductor structures, engineering materials. Springer-Verlag, Berlin

    Google Scholar 

  31. 31.

    Nicollian EH, Goetzberger A (1965) MOS conductance technique for measuring surface state parameters. Appl Phys Lett 7:216

    CAS  Google Scholar 

  32. 32.

    Prabakar K, Narayandass SK, Mangalaraj D (2003) Dielectric properties of Cd0.6Zn0.4Te thin films. Phys Stat Sol (a) 199(3):507

    CAS  Google Scholar 

  33. 33.

    Tataroğlu A, Yildirim M, Baran HM (2014) Dielectric characteristics of gamma irradiated au/SnO2/n-Si/au (MOS) capacitor. Mater Sci Semicond Process 28:89–93

    Google Scholar 

  34. 34.

    Sengwa RJ, Dhatarwal P, Choudhary S (2015) Curr. Appl. Phys 15:135–143

    Google Scholar 

  35. 35.

    Wagner RW (1914) Erklarung der dilectricshen-narchwirkugen auf grund maxwellscher vorstellungen. Arch Electrotech 2:371

    Google Scholar 

  36. 36.

    Sillars RW (1937) The properties of dielectrics containing semiconducting particles various shapes. Inst Elect Eng 80:378

    Google Scholar 

  37. 37.

    Sattar AA, Samy AR (2003) Dielectric properties of rare earth substituted cu–Zn ferrites. Phys Status Solidi A 200:415–422

    CAS  Google Scholar 

  38. 38.

    Prabakar K, Narayandass Sa K, Mangalaraj D (2003) Dielectric properties of Cd0. 6Zn0. 4Te thin films. Phys Status Solidi A 199:507–514

    CAS  Google Scholar 

  39. 39.

    Symth CP (1955) Dielectric behavior and structure. McGraw-Hill, New York

    Google Scholar 

  40. 40.

    Ranga Raju MR, Choudhary RNP, Ram S (2003) Dielectric and electrical properties of Sr5EuCr3Nb7O30 nanoceramics prepared using a novel chemical route. Phys Stat Sol a 239:480

    Google Scholar 

  41. 41.

    Singh V, Kulkarni AR, Rama Mohan TR (2003). J Appl Polym Sci 90:3602

    CAS  Google Scholar 

  42. 42.

    Mazen SA, Zaki HM (2003) Effect of tetra ionic substitution on the dielectric properties of cu-ferrite. Phys Stat Sol (a) 199:305–320

    CAS  Google Scholar 

  43. 43.

    Maurya D, Kumar J, Shripal (2005) Dielectric- spectroscopic and a.c. conductivity studies on layered Na2-XKXTi3O7 (X=0.2, 0.3, 0.4) ceramics. J Phys Chem Solids 66:1614–1620

    CAS  Google Scholar 

  44. 44.

    Bengl S, Bülbül MM (2013) Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Curr Appl Phys 13:1819–1825

    Google Scholar 

  45. 45.

    Arslan E, Şafak Y, Taşçioğlu İ (2010) Frequency and temperature dependence of the dielectric and AC electrical conductivity in (Ni/au)/AlGaN/AlN/GaN heterostructures. Microelectron Eng 87:1997–2001

    CAS  Google Scholar 

  46. 46.

    Dutta P, Biswas S, De SK (2002) Dielectric- relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200

    CAS  Google Scholar 

  47. 47.

    Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M (1994) Space- charge relaxation in perovskites. Phys. Rev B 49:7868–7873

    CAS  Google Scholar 

  48. 48.

    Abdel-wahab FA, Maksoud HM, Kotkata MF (2006) Electrical conduction and dielectric relaxation in semiconductor SeSm0.005. J Phys D Appl Phys 39:190–195

    CAS  Google Scholar 

  49. 49.

    Sze SM (1981) Physics of semiconductor devices, second ed., John Wiley & Sons, New York

  50. 50.

    Jonscher A K (1980) Physics of Thin Films, edited by M. H. Francombe, Vol. 11, Academic Press, London and New York, 205

  51. 51.

    Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    CAS  Google Scholar 

  52. 52.

    Funke K (1993). Prog. Solid -State Chem 22:111–195

    CAS  Google Scholar 

  53. 53.

    Panigrahi SC, Piyush RD, Parida BN, Padhee R, Choudhary RNP (2014) Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system. J Alloy Compd 604:73–82

    CAS  Google Scholar 

  54. 54.

    Çetinkaya HG, Yıldırım M, Durmus P, Altındal S (2017) Diode - to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J. Alloy. Compd 728:896–901

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Research Centre (NRC), Cairo, Egypt for supporting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ragab Mahani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahani, R., Ashery, A. & Elnasharty, M.M.M. Frequency and Voltage Dependence of the Dielectric Properties of Ni/SiO2/P-Si (MOS) Structure. Silicon 12, 1879–1885 (2020). https://doi.org/10.1007/s12633-019-00277-4

Download citation

Keywords

  • MOS structure
  • Accumulation region
  • SiO2
  • Permittivity