Influence of Source Stack and Heterogeneous Gate Dielectric on Band to Band Tunneling Rate of Tunnel FET


In this paper, the presence of source stack and heterogeneous gate dielectric material in the structure of an n-channel tunnel FET (TFET) is investigated. P+ type source stack above the source region causes an increase in the electric field which in turn leads to more band bending in the energy band diagram of the proposed structure. Therefore, the effective width of tunneling region decreases and as a result electron Band to Band Tunneling (BTBT) rate enhances. It is also shown that incorporating hetero gate dielectric material can further enhance BTBT rate in the source-channel region and it becomes more intensive as the permittivity of high-k dielectric is increased. The hetero gate structure which is utilized is a combination of SiO2 and a high-k material. Our simulation results indicate that the presence of SiO2 in the drain side minimizes ambipolar current at negative gate voltages. Simulations are performed using Silvaco Atlas TCAD for a channel length of 50 nm using nonlocal tunneling model.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ramezani Z, Orouji AA (2017) Amended electric field distribution: a reliable technique for electrical performance improvement in nano scale SOI MOSFETs. J Electron Mater 46:2269–2281

    CAS  Article  Google Scholar 

  2. 2.

    Taur Y, Ning TH (2009) Fundamentals of modern VLSI devices, 2nd edn. Cambridge University Press, New York

  3. 3.

    Weste NH, Harris D (2011) CMOS VLSI design: a circuits and systems perspective, 4th edn. Pearson Education, Boston

  4. 4.

    Karbalaei M, Dideban D (2016) A novel silicon on insulator MOSFET with an embedded heat pass path and source side channel doping. Superlattice Microst 90:53–67

    CAS  Article  Google Scholar 

  5. 5.

    Chander S, Baishya S (2016) Two-dimensional model of a heterojunction silicon-on-insulator tunnel field effect transistor. Superlattice Microst 90:176–183

    CAS  Article  Google Scholar 

  6. 6.

    Shahnazarisani H, Mohammadi S (2015) Simulation analysis of a novel fully depleted SOI MOSFET: electrical and thermal performance improvement through trapezoidally doped channel and silicon–nitride buried insulator. Physica E 69:27–33

    CAS  Article  Google Scholar 

  7. 7.

    Orouji AA, Anvarifard MK (2013) SOI MOSFET with an insulator region (IR-SOI): a novel device for reliable nanoscale CMOS circuits. Mater Sci Eng B 178:431–437

    CAS  Article  Google Scholar 

  8. 8.

    Mehrad M, Ghadi ES (2017) C-shape silicon window nanoMOSFET for reducing the short channel effects. In 2017 joint international EUROSOI workshop and international conference on ultimate integration on silicon (EUROSOI-ULIS), Athens, pp 164–167.

  9. 9.

    Choi WY, Song JY, Lee JD, Park YJ, Park B-G (2005) 70-nm impact-ionization metal-oxide-semiconductor (I-MOS) devices integrated with tunneling field-effect transistors (TFETs). In 2007 IEEE international electron devices meeting (IEDM), Washington, pp 955–958.

  10. 10.

    Jain P, Prabhat V, Ghosh B (2015) Dual metal-double gate tunnel field effect transistor with mono/hetero dielectric gate material. J Comput Electron 14:537–542

    CAS  Article  Google Scholar 

  11. 11.

    Kyung C-M (2016) Nano devices and circuit techniques for low-energy applications and energy harvesting. Springer Science & Business Media, Dordrecht

  12. 12.

    Choi WY, Lee HK (2016) Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs). Nano Converg 3:13

    Article  Google Scholar 

  13. 13.

    S. I.Association (2015) International technology roadmap for semiconductors, Accessed 12 Sept 2019.

  14. 14.

    Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-$\kappa $ gate dielectric. IEEE transactions on electron devices 54:1725–1733

    CAS  Article  Google Scholar 

  15. 15.

    Verhulst AS, Sorée B, Leonelli D, Vandenberghe WG, Groeseneken G (2010) Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. J Appl Phys 107:024518

    Article  Google Scholar 

  16. 16.

    Lu H, Seabaugh A (2014) Tunnel field-effect transistors: state-of-the-art. IEEE J Electron Devi 2:44–49

    CAS  Article  Google Scholar 

  17. 17.

    Jang J-S, Choi W-Y (2011) Ambipolarity factor of tunneling field-effect transistors (TFETs). JSTS: Journal of Semiconductor Technology and Science 11:272–277

    Article  Google Scholar 

  18. 18.

    Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2008) Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and ≪60mV/dec subthreshold slope. In 2008 IEEE international electron devices meeting (IEDM), San Francisco, pp 1–3.

  19. 19.

    Kim SH, Kam H, Hu C, Liu T-J K (2009) Germanium-source tunnel field effect transistors with record high ION/IOFF. In 2009 symposium on VLSI technology, Honolulu, pp 178–179, 15–17 June 2009

  20. 20.

    D. S. Yadav, D. Sharma, B. R. Raad, and V. Bajaj, “Dual workfunction hetero gate dielectric tunnel field-effect transistor performance analysis,” in Advanced Communication Control and Computing Technologies (ICACCCT), 2016 International Conference on, 2016, pp. 26–29

  21. 21.

    Nagavarapu V, Jhaveri R, Woo JC (2008) The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Transactions on Electron Devices 55:1013–1019

    CAS  Article  Google Scholar 

  22. 22.

    Naderi A, Tahne BA (2016) T-CNTFET with gate-drain overlap and two different gate metals: a novel structure with increased saturation current. ECS Journal of Solid State Science and Technology 5:M3032–M3036

    CAS  Article  Google Scholar 

  23. 23.

    Naderi A, Ahmadmiri SA (2016) Attributes in the performance and design considerations of asymmetric drain and source regions in carbon nanotube field effect transistors: quantum simulation study. ECS Journal of Solid State Science and Technology 5:M63–M68

    CAS  Article  Google Scholar 

  24. 24.

    Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE transactions on electron devices 57:2317–2319

    Article  Google Scholar 

  25. 25.

    Verhulst AS, Vandenberghe WG, Maex K, Groeseneken G (2007) Tunnel field-effect transistor without gate-drain overlap. Appl Phys Lett 91:053102

    Article  Google Scholar 

  26. 26.

    Madan J, Chaujar R (2017) Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattices Microst 102:17–26

    CAS  Article  Google Scholar 

  27. 27.

    Vijayvargiya V, Vishvakarma SK (2014) Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans Nanotechnol 13:974–981

    CAS  Article  Google Scholar 

  28. 28.

    Ahish S, Sharma D, Kumar YBN, Vasantha MH (2015) Performance enhancement of novel InAs/Si hetero double-gate tunnel FET using Gaussian doping. IEEE Trans on Electron Devices 63:288–295

    Article  Google Scholar 

  29. 29.

    Naderi A, Ghodrati M (2018) An efficient structure for T-CNTFETs with intrinsic-n-doped impurity distribution pattern in drain region. Turk J Electr Eng Comput Sci 26:2335–2346

    Article  Google Scholar 

  30. 30.

    Anvarifard MK, Orouji AA (2018) Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel. IEEE Trans on Electron Devices 65:1653–1657

    CAS  Article  Google Scholar 

  31. 31.

    Anvarifard MK (2019) Junctionless transistor with pulsed shaped dielectric (PSD-JNL): an absorbing structure for nanoscale aims. ECS J Solid State Sci Technol 8:N5–N12

    CAS  Article  Google Scholar 

  32. 32.

    Colinge J-P (2004) Silicon-on-insulator technology: materials to VLSI, 3rd edn. Springer Science & Business Media, New York

  33. 33.

    Atlas DS (2016) Atlas user’s manual. Silvaco international software, Santa Clara, Accessed 12 Sept 2019

  34. 34.

    Shaker A, El Sabbagh M, El-Banna MM (2017) Influence of drain doping engineering on the ambipolar conduction and high-frequency performance of TFETs. IEEE Trans Electron Devices 64:3541–3547

    CAS  Article  Google Scholar 

  35. 35.

    Solomon PM, Jopling J, Frank DJ, D’Emic C, Dokumaci O, Ronsheim P et al (2004) Universal tunneling behavior in technologically relevant P/N junction diodes. J Appl Phys 95:5800–5812

    CAS  Article  Google Scholar 

  36. 36.

    Boucart K, Ionescu AM (2007) Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid State Electron 51:1500–1507

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammad Karbalaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karbalaei, M., Dideban, D. Influence of Source Stack and Heterogeneous Gate Dielectric on Band to Band Tunneling Rate of Tunnel FET. Silicon 12, 1811–1817 (2020).

Download citation


  • TFET
  • Band to band tunneling
  • Source stack
  • Heterogeneous
  • High-k
  • Ambipolar conduction